952 resultados para Bis(2-etilhexil)amina
Resumo:
The crystal structures of a pair of closely related macrocyclic cyano- and hydroxopentaaminecobalt(III) complexes, as their perchlorate salts, are reported. Although the two complexes, [Co(CN)(C11H27N5)](ClO4)2.H2O and [Co(OH)(C11H27N5)](ClO4)(2), exhibit similar conformations, significant differences in the Co-N bond lengths arise from the influence of the sixth ligand (cyano as opposed to hydroxo). The ensuing hydrogen-bonding patterns are also distinctly different. Disorder in the perchlorate anions was clearly resolved and this was rationalized on the basis of distinct hydrogen-bonding motifs involving the anion O atoms and the N-H and O-H donors.
Resumo:
Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Methods. Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH3bis-GMA or CF3bis-GMA, with aldehyde (24mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n = 6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n = 6). Data were analyzed by one-way ANOVA and Tukey`s test (alpha = 0.05). Results. Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH3bis-GMA and bis-GMA/CF3bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. Significance. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties. Published by Elsevier Ltd on behalf of Academy of Dental Materials
Resumo:
Mercury(II) in the title compound, [Hg(C4H13N3)2](SCN)2, is six-coordinated with two diethylenetriamine (dien) ligands in a sym-facial configuration. The complex cation has a twofold axis of symmetry, and the secondary amine groups are in trans positions.
Resumo:
The unusual chiral heterocyclic systems, trioxabicyclo[3.3.1]nona-3,7-dienes (bridged bisdioxines), are incorporated as novel spacer molecules into macrocyclic polyether ring systems of various sizes (8, 9 as well as 11-15) by cyclocondensation reaction of the! bisacid chloride 4b or bisesters 6,7 and 10, with several ethylene glycols. The 2:2 macrocycles 12-14 are obtained in approximately 50:50 mixtures of diastereomers. These conclusions are mainly based on HPLC data presented in Table I as well as X-ray analyses of (1R,5R)-8c (space group Pbca, a = 10.163(3) Angstrom, b = 18.999(4) Angstrom, c = 36.187(10) Angstrom, V = 6987(3) Angstrom(3), Z = 8, d(calc) = 1.218 g cm(-3), 6974 reflections, R = 0.0553.), mesolrac-11 (space group P (1) over bar, a = 10.472(5) Angstrom, b = 16.390(5) Angstrom, c = 17.211(5) Angstrom, alpha = 98.69(2)degrees, beta = 93.04(2)degrees, gamma = 98.52(2)degrees, V = 2879.3(18) Angstrom(3), Z = 2, d(calc) = 1.173 g cm(-3), 11,162 reflections, R = 0.0945) and meso-12 (space group P2(1)/c, a = 9.927(2), b = 18.166(3), c = 17.820(3) Angstrom, beta = 96.590(10)degrees, V = 3192.3(10)Angstrom(3), Z = 4, D-c = 1.109 g cm(-3), 3490 reflections, R = 0.0646). The 1:1 macrocycles 8b,c are also formed by intramolecular transesterification of the open-chain bisesters 7b,c and their formation is favored by the use of metal ions as templates. The bridged bisdioxine moieties in 8b and 12 are converted into the corresponding chiral tetra-oxaadamantane spacers to afford macrocycles 16 and 17. Preliminary metal ion complexation studies with selected species (8c, 11-14) were also performed.
Resumo:
C,C-Dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene NS-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-,beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G*) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-Bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C= C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G*) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.
Resumo:
Novel [Ru(eta(6)-p-cymene)(kappa(2)-L)X] and [Ru(eta(6)-p-cymene)(kappa(3)-L)]X center dot nH(2)O complexes (L = bis-, tris-, or tetrakis-pyrazolylborate; X = Cl, N-3, PF6, or CF3SO3) are prepared by treatment of [Ru(eta(6)-p-cymene)Cl-2](2) with poly-(pyrazolyl)borate derivatives [M(L)] (L in general; in detail L = Ph(2)Bp = diphenylbis-(pyrazol-1-yl)borate; L = Tp = hydrotris(pyrazol-1-yl)borate; L = pzTp = tetrakis(pyrazol-1-yl)borate; L = Tp(4Bo) = hydrotris(indazol-1-yl)borate, L = T-p4Bo,T-5Me = (5-methylindazol-1-yl)borate; L = Tp(Bn,4Ph) = hydrotris(3-benzyl-4-phenylpyrazol-1-yl)borate; M = Na, K, or TI) and characterized by analytical and spectral data (IR, ESIMS, H-1 and C-13 NMR). The structures of [Ru(eta(6)-p-cymene)(Ph(2)Bp)Cl] (1) and [Ru(eta(6)-p-cymene)(Tp)Cl] (3) have been established by single-crystal X-ray diffraction analysis. Electrochemical studies allowed comparing the electron-donor characters of Tp and related ligands and estimating the corresponding values of the Lever E-L ligand parameter. The complexes [Ru(eta(6)-p-cymene)-(kappa(2)-L)X] and [Ru(eta(6)-p-cymene)(kappa(3)-L)]X center dot nH(2)O act as catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehyde and nitroethane to the corresponding beta-nitroalkanol (up to 82% yield, at room temperature) with diastereoselectivity toward the formation of the threo isomer.
Resumo:
A copper C(2)-symmetric bis(oxazoline), CuBox, was introduced in two forms of commercial Y zeolite: a sodium form (NaY) and an ultrastable form (NaUSY). CuBox was introduced by first partially exchanging the sodium cations of both zeolites for copper and then by refluxing the obtained materials with a solution of bis(oxazoline) (Box). Two different loadings were prepared for each form of zeolite. The materials were characterized by copper ICP-AES, elemental analysis, XPS, FTIR, TG, and nitrogen adsorption isotherms at -196 degrees C. Evidence for Box ligand location in the supercages of NaY and NaUSY zeolites and its coordination to the exchanged copper(II) was obtained by the several techniques used. The materials were all active in the cyclopropanation of styrene with ethyldiazoacetate at room temperature and diastereoselective toward trans cydopropanes. Although the materials containing Box showed low enantioselectivities, their catalytic activities were higher than the parent copper exchanged zeolites, and did not decrease with reuse, at least during three consecutive cycles.
Resumo:
Novel (E)-3-aryl-4-benzylidene-8-hydroxy-3,4-dihydro-1 H-xanthene-1,9(2H)-diones are prepared by the cyclization of (E,E)-3-cinnamoyl-5-hydroxy-2-styrylchromones efficiently catalyzed with boron tribromide. The (E,E)-3-cinnamoyl-5-hydroxy-2-styrylchromones are obtained from the Baker–Venkataraman rearrangement of (E,E)-2-acetyl-1,3-phenylene bis(3-phenylacrylate), which is greatly improved under microwave irradiation.
Resumo:
A presente dissertação descreve o desenvolvimento e a caracterização de sensores ópticos com base em membranas de poli(cloreto de vinilo), PVC, para determinação de Norfloxacina em amostras do sector da aquacultura. Estes sensores basearam-se na reacção colorimétrica entre um metal imobilizado em PVC e a Norfloxacina. O metal foi escolhido com base em ensaios prévios de reacção colorimétrica entre a Norfloxacina e várias espécies metálicas, nomeadamente, Fe(III), Al(III), Pb(II), Aluminon, Mo(II), Mn(II), Ni(II), Cu(II), Co(II), Sn(II) e V(V). A reacção mais intensa foi obtida com o Fe(III). Neste sentido, numa primeira fase foram desenvolvidos sensores baseados em Fe(III). O efeito de alguns parâmetros experimentais na resposta desses sensores foi avaliado de modo univariado. Incluem-se aqui o efeito do pH, avaliado entre 2,00 e 6,00, e o da concentração de Fe(III), variada entre cerca de 1,00x10-5 M e 2,00x10-4 M. Os melhores valores foram obtidos a pH 3, para o qual se verificou um comportamento linear entre cerca de 1,00x10-5 M e 1,70x10-4 M de Fe(III). Utilizando as condições seleccionadas anteriormente, procedeu-se à caracterização do complexo sob ponto de vista químico. Os valores obtidos apontaram para a necessidade de um excesso de Fe(III) de, pelo menos, 10 vezes, no sentido de garantir a máxima extensão de complexação. O complexo referido apresentou, nestas condições, um comportamento linear ao longo do intervalo de concentrações de cerca de 7,00x10-5 M a 7,00x10-4 M em NOR. O complexo formado foi estável ao longo de 90 minutos. As condições óptimas para análise desse complexo numa superfície sólida foram obtidas após avaliação do efeito da quantidade de Fe(III) e do tipo e quantidade de solvente mediador (o-nitrofenil octil éter, di-n-octilftalato, dibutilftalato, bis(etilhexil)sebacato, bis(etilhexil)ftalato). O bis(etilhexil)sebacato foi o solvente mediador escolhido e a relação de quantidade entre o PVC e o solvente mediador foi igual a 1:2. O procedimento de preparação do sensor sólido e subsequente optimização foi aplicado a outras espécies metálicas, para além do Fe(III), tais como, Cu(II), Mn(II) e aluminon. A conjugação de todos estes metais permitiu desenvolver um array de sensores para despistagem de Norfloxacina em águas de aquacultura. Algumas membranas sensoras foram aplicadas com sucesso no controlo de Norfloxacina em amostras de águas ambientais dopadas. Os resultados obtidos com membranas de Fe(III) e Cu(II) foram exactos, tendo-se registado valores de concentração próximos dos reais. O método proposto permitiu, por isso, a despistagem rápida e eficaz da presença de um antibiótico em águas ambientais, permitindo ainda o seu doseamento a um baixo custo. Numa perspectiva de rotina, e tendo em vista a despistagem deste antibiótico, este método revelou-se mais rápido e mais barato do que os demais métodos descritos na literatura para este efeito.
Resumo:
The electrochemical properties of rhodium(III) 1-3 and iridium(III) 4-6 complexes containing bis(pyrazolyl)alkane ligands [MCp*Cl(R2C(3,5-R'2pz)2)]X (M = Rh (1) or Ir (4), R = R' = H, X = Cl; M = Rh (2) or Ir (5), R=H,R'=Me,X=Cl;M=Rh(3) or Ir (6), R=Me,R'=H,X=OTf;pz=pyrazolyl;Cp*=η5-C5Me5) were investigated by cyclic voltammetry and controlled potential electrolysis. They exhibit two sequential irreversible reductions assigned to the MIII → MII and MII → MI reductions, which are dependent on the methylation of the bis(pyrazolyl)alkane ligands.
Resumo:
[RuCl(arene)(-Cl)](2) dimers were treated in a 1:2 molar ratio with sodium or thallium salts of bis- and tris(pyrazolyl)borate ligands [Na(BpBr3)], [Tl(TpBr3)], and [Tl(Tp(iPr,4Br))]. Mononuclear neutral complexes [RuCl(arene)((2)-BpBr3)] (1: arene=p-cymene (cym); 2: arene=hexamethylbenzene (hmb); 3: arene=benzene (bz)), [RuCl(arene)((2)-TpBr3)] (4: arene=cym; 6: arene=bz), and [RuCl(arene)((2)-Tp(iPr,4Br))] (7: arene=cym, 8: arene=hmb, 9: arene=bz) have been always obtained with the exception of the ionic [Ru-2(hmb)(2)(-Cl)(3)][TpBr3] (5), which formed independently of the ratio of reactants and reaction conditions employed. The ionic [Ru(CH3OH)(cym)((2)-BpBr3)][X] (10: X=PF6, 12: X=O3SCF3) and the neutral [Ru(O2CCF3)(cym)((2)-BpBr3)] (11) have been obtained by a metathesis reaction with corresponding silver salts. All complexes 1-12 have been characterized by analytical and spectroscopic data (IR, ESI-MS, H-1 and (CNMR)-C-13 spectroscopy). The structures of the thallium and calcium derivatives of ligand TpBr3, [Tl(TpBr3)] and [Ca(dmso)(6)][TpBr3](2)2DMSO, of the complexes 1, 4, 5, 6, 11, and of the decomposition product [RuCl(cym)(Hpz(iPr,4Br))(2)][Cl] (7) have been confirmed by using single-crystal X-ray diffraction. Electrochemical studies showed that 1-9 and 11 undergo a single-electron (RuRuIII)-Ru-II oxidation at a potential, measured by cyclic voltammetry, which allows comparison of the electron-donor characters of the bis- and tris(pyrazol-1-yl)borate and arene ligands, and to estimate, for the first time, the values of the Lever E-L ligand parameter for BpBr3, TpBr3, and Tp(iPr,4Br). Theoretical calculations at the DFT level indicated that both oxidation and reduction of the Ru complexes under study are mostly metal-centered with some involvement of the chloride ligand in the former case, and also demonstrated that the experimental isolation of the (3)-binuclear complex 5 (instead of the mononuclear 5) is accounted for by the low thermodynamic stability of the latter species due to steric reasons.
Resumo:
Treatment of a dichloromethane solution of trans-[Mo(NCN){NCNC(O)R}(dppe)(2)]Cl [R = Me (1a), Et (1b)] (dppe = Ph2PCH2CH2PPh2) with HBF4, [Et3O][BF4] or EtC(O)Cl gives trans-[Mo(NCN)Cl-(dppe)(2)]X [X = BF4 (2a) or Cl (2b)] and the corresponding acylcyanamides NCN(R')C(O)Et (R' = H, Et or C(O)Et). X-ray diffraction analysis of 2a (X = BF4) reveals a multiple-bond coordination of the cyanoimide ligand. Compounds 1 convert to the bis(cyanoimide) trans-[Mo(NCN)(2)(dppe)(2)] complex upon reaction with an excess of NaOMe (with formation of the respective ester). In an aprotic medium and at a Pt electrode, compounds 1 (R = Me, Et or Ph) undergo a cathodically induced isomerization. Full quantitative kinetic analysis of the voltammetric behaviour is presented and allows the determination of the first-order rate constants and the equilibrium constant of the trans to cis isomerization reaction. The mechanisms of electrophilic addition (protonation) to complexes 1 and the precursor trans[Mo(NCN)(2)(dppe)(2)], as well as the electronic structures, nature of the coordination bonds and electrochemical behaviour of these species are investigated in detail by theoretical methods which indicate that the most probable sites of the proton attack are the oxygen atom of the acyl group and the terminal nitrogen atom, respectively.
Resumo:
Molybdenum and tungsten complexes containing the pypzH (3-(2-pyridyl)pyrazole) ligand as a chelating bidentate are prepared: [Mo(CO)(4)(pypzH)], cis-[MoBr(eta(3)-allyl)(CO)(2)(pypzH)], cis-[MoCl(eta(3)-methallyl)(CO)(2)(pypzH)], [MI2(CO)(3)(pypzH)] (M = Mo, W) from [Mo(CO)(4)(NBD)] or the adequate bis(acetonitrile) complexes. The deprotonation of the molybdenum allyl or methallyl complexes affords the bimetallic complexes [cis-{Mo(eta(3)-allyl)(CO)(2)(mu(2)-pypz)}](2) or [cis-{Mo(eta(3)-methallyl)(CO)(2)(mu(2)-pypz)}](2) (mu(2)-pypz = mu(2)-3-(2-pyridyl-kappa N-1) pyrazolate-2 kappa N-1). The allyl complex was subjected to an electrochemical study, which shows a marked connection between both metallic centres through the bridging pyridylpyrazolates.
Resumo:
Dissertation to obtain a Master Degree in Biotechnology