977 resultados para Biomass. Elephant grass. Catalytic pyrolysis. MCM-41. Metal oxides.


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Phosphorus is a key plant nutrient and as such, is incorporated into growing biomass in small amounts. This paper examines the influence of phosphorus, present in either acid (HPO) or salt ((NH)PO) form, on the pyrolysis behaviour of both Miscanthus × giganteus, and its cell wall components, cellulose, hemicellulose (xylan) and lignin (Organosolv). Pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) is used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) is used to examine the distribution of char and volatiles. Phosphorus salts are seen to catalyse the pyrolysis and modify the yields of products, resulting in a large increase in char yield for all samples, but particularly for cellulose and Miscanthus. The thermal degradation processes of cellulose, xylan and Miscanthus samples occur in one step and the main pyrolysis step is shifted to lower temperature in the presence of phosphorus. A small impact of phosphorus was observed in the case of lignin char yields and the types of pyrolysis decomposition products produced. Levoglucosan is a major component produced in fast pyrolysis of cellulose. Furfural and levoglucosenone become more dominant products upon P-impregnation pointing to new rearrangement and dehydration routes. The P-catalysed xylan decomposition route leads to a much simpler mixture of products, which are dominated by furfural, 3-methyl-2-cyclopenten-1-one and one other unconfirmed product, possibly 3,4-dihydro-2-methoxy-2H-pyran or 4-hydroxy-5,6-dihydro-(2H)-pyran-2-one. Phosphorus-catalysed lignin decomposition also leads to a modified mixture of tar components and desaspidinol as well as other higher molecular weight component become more dominant relative to the methoxyphenyl phenols, dimethoxy phenols and triethoxy benzene. Comparison of the results for Miscanthus lead to the conclusion that the understanding of the fast pyrolysis of biomass can, for the most part, be gained through the study of the individual cell wall components, provided consideration is given to the presence of catalytic components such as phosphorus.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This chapter examines the fast pyrolysis of biomass to produce liquids for use as fuels and chemicals. The technology for fast pyrolysis is described and the characteristics of the main product bio-oil. This primary liquid is characterised by the many properties that affect its use. These properties have caused increasingly extensive research to be undertaken to address properties that need modification and this area is reviewed in terms of physical, catalytic and chemical upgrading. Of particular note is the increasing diversity of upgrading methods. © 2013 Woodhead Publishing Limited All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Biomass pyrolysis to bio-oil is one of the promising sustainable fuels. In this work, relation between biomass feedstock element characteristic and pyrolysis process outputs was explored. The element characteristics considered in this study include moisture, ash, fix carbon, volatile matter, carbon, hydrogen, nitrogen, oxygen, and sulphur. A semi-batch fixed bed reactor was used for biomass pyrolysis with heating rate of 30 °C/min from room temperature to 600 °C and the reactor was held at 600 °C for 1 h before cooling down. Constant nitrogen flow rate of 5 L/min was provided for anaerobic condition. Rice husk, Sago biomass and Napier grass were used in the study to form different element characteristic of feedstock by altering mixing ratio. Comparison between each element characteristic to total produced bio-oil yield, aqueous phase bio-oil yield, organic phase bio-oil yield, higher heating value of organic phase bio-oil, and organic bio-oil compounds was conducted. The results demonstrate that process performance is associated with feedstock properties, which can be used as a platform to access the process feedstock element acceptance range to estimate the process outputs. Ultimately, this work evaluated the element acceptance range for proposed biomass pyrolysis technology to integrate alternative biomass species feedstock based on element characteristic to enhance the flexibility of feedstock selection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adsorption of Ni(2+), Zn(2+) or Pb(2+) by dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris was studied as a function of contact time and initial metal concentration. The zero point of charge calculated for these biosorbents (pH(zpc) 4.0 and 3.4, respectively) and additional pH tests suggested the use of pH in the range 5.0-5.5 for the experiments. The equilibrium isotherms were evaluated in terms of maximum sorption capacity and sorption affinity. The pseudo first and second order kinetic models were considered to interpret the experimental data, and the latter best described the adsorption system. Both the Freundlich and Langmuir models were shown to well describe the sorption isotherms, thus suggesting an intermediate mono/multilayer sorption mechanism. Compared to A. platensis (q(e) = 0.354, 0.495 and 0.508 mmol g(-1) for Ni(2+), Pb(2)+ and Zn(2+), respectively), C. vulgaris behaved as a better biosorbent because of higher equilibrium sorption capacity (q(e) = 0.499, 0.634 and 0.664 mmol g(-1), respectively). The removal efficiency decreased with increasing metal concentration, pointing out a passive adsorption process involving the active sites on the surface of the biomasses. The FT-IR spectroscopy evidenced that ions removal occurred mainly by interaction between metal and carboxylate groups present on both the cell walls. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bifunctional transformation of n-hexane was carried out over Pt/MCM-22 based catalysts. MCM-22 was synthesized and submitted to ion exchange with rare earth nitrate solutions of La, Nd and Yb, followed by Pt introduction. Three different methods were used to introduce about 1 wt% of Pt in the zeolite: ion exchange, incipient wetness impregnation and mechanical mixture with Pt/Al(2)O(3). The bifunctional catalysts were characterized by transmission electron microscopy and by the model reaction of toluene hydrogenation. These experiments showed that, in the ion exchanged sample, Pt is located both within the inner micropores and on the outer surface, whereas in the impregnated one, the metal is essentially located on the outer surface under the form of large particles. The presence of RE elements increases the hydrogenating activity of Pt/MCM-22 since the location of these species at the vicinity of metal particles causes modification on its electronic properties. Whatever the mode of Pt introduction, a fast initial decrease in conversion is observed for n-hexane transformation, followed by a plateau related to the occurrence of the catalytic transformations at the hemicages located at the outer surface of the crystals. The effect of rare earth elements on the hydrogenating function leads to a lower selectivity in dibranched isomers and increased amounts of light products.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A copper(II) chiral aza-bis(oxazoline) homogeneous catalyst (CuazaBox) was anchored onto the external surface of MCM-22 and ITQ-2 structures, as well as encapsulated into hierarchical MCM-22. The transition metal complex loading onto the porous solids was determined by ICP-AES and the materials were also characterized by elemental analysis (C, N, H, S), FTIR, XPS, TG and low temperature N-2 adsorption isotherms. The materials were tested as heterogeneous catalysts in the benchmark reaction of cyclopropanation of styrene to check the effect of the immobilization procedure on the catalytic parameters, as well as on their reutilization in several catalytic cycles. Catalyst CuazaBox anchored onto the external surface of MCM-22 and ITQ-2 materials were more active and enantioselective in the cyclopropanation of styrene than the corresponding homogeneous phase reaction run under similar experimental conditions. This is due to the propylation of the acidic aza-Box nitrogen. HMCM-22 was nevertheless the best heterogeneous catalyst. Encapsulation of CuazaBox on post-synthesis modified MCM-22 materials led to low activities and enantioselectivities. But reversal on the stereochemical course of the reaction was observed, probably due to confinement effect. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work concerns recent advances (since 2005) in the oxidative functionalization of alkanes, alkenes and ketones, under mild conditions, catalyzed by homoscorpionate tris(pyrazol-1-yl)methane metal complexes. The main types of such homogeneous or supported catalysts are classified, and the critical analysis of the most efficient catalytic systems in the different reactions is presented. These reactions include the mild oxidation of alkanes (typically cyclohexane as a model substrate) with hydrogen peroxide (into alkyl hydroperoxides, alcohols, and ketones), the hydrocarboxylation of gaseous alkanes (with carbon monoxide and potassium peroxodisulfate) into the corresponding Cn+1 carboxylic acids, as well as the epoxidation of alkenes and the Baeyer-Villiger oxidation of linear and cyclic ketones with hydrogen peroxide into the corresponding esters and lactones. Effects of various reaction parameters are highlighted and the preferable requirements for a prospective homogeneous or supported C-scorpionate-M-based catalyst in oxidative transformations of those substrates are identified. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Desilication and a combination of alkaline followed by acid treatment were applied to MCM-22 zeolite using two different base concentrations. The samples were characterised by powder X-ray diffraction, Al-27 and Si-29 MAS-NMR spectroscopy, SEM, TEM and low temperature N-2 adsorption. The acidity of the samples was study through pyridine adsorption followed by FTIR spectroscopy and by the analyses of the hydroxyl region. The catalytic behaviour, anticipated by the effect of post-synthesis treatments on the acidity and space available inside the two internal pore systems was evaluated by using the model reaction of m-xylene transformation. The generation of mesoporosity was achieved upon alkaline treatment with 0.05 M NaOH solution and practically no additional gain was obtained when the more concentrate solution, 0.1 M, was used. Instead, Al extraction takes place along with Si, as shown by Si-29 and Al-27 MAS-NMR data, followed by Al deposition as extraframework species. Samples submitted to alkaline plus acid treatments present distinct behaviour. When the lowest NaOH solution was used no relevant effect was observed on the textural characteristics. Additionally, when the acid treatment was performed on an already fragilized MCM-22 structure, due to previous desilication with 0.1 M NaOH solution, the extraction of Al from both internal pore systems promotes their interconnection, evolving from a 2-D to a 3-D porous structure. This transformation has a marked effect in the catalytic behaviour, allowing an increase of m-xylene conversion as a consequence of an easier and faster molecular traffic in the 3-D structure. On the other hand, the continuous deposition of extraframework Al species inside the pores leads to a shape selective effect that privileges the formation of the more valuable isomer p-xylene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selostus: Ruokohelven biomassan tuotantoon vaikuttavien ominaisuuksien vaihtelu

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Environmentally harmful consequences of fossil fuel utilisation andthe landfilling of wastes have increased the interest among the energy producers to consider the use of alternative fuels like wood fuels and Refuse-Derived Fuels, RDFs. The fluidised bed technology that allows the flexible use of a variety of different fuels is commonly used at small- and medium-sized power plants ofmunicipalities and industry in Finland. Since there is only one mass-burn plantcurrently in operation in the country and no intention to build new ones, the co-firing of pre-processed wastes in fluidised bed boilers has become the most generally applied waste-to-energy concept in Finland. The recently validated EU Directive on Incineration of Wastes aims to mitigate environmentally harmful pollutants of waste incineration and co-incineration of wastes with conventional fuels. Apart from gaseous flue gas pollutants and dust, the emissions of toxic tracemetals are limited. The implementation of the Directive's restrictions in the Finnish legislation is assumed to limit the co-firing of waste fuels, due to the insufficient reduction of the regulated air pollutants in the existing flue gas cleaning devices. Trace metals emission formation and reduction in the ESP, the condensing wet scrubber, the fabric filter, and the humidification reactor were studied, experimentally, in full- and pilot-scale combustors utilising the bubbling fluidised bed technology, and, theoretically, by means of reactor model calculations. The core of the model is a thermodynamic equilibrium analysis. The experiments were carried out with wood chips, sawdust, and peat, and their refuse-derived fuel, RDF, blends. In all, ten different fuels or fuel blends were tested. Relatively high concentrations of trace metals in RDFs compared to the concentrations of these metals in wood fuels increased the trace metal concentrations in the flue gas after the boiler ten- to hundred-folds, when RDF was co-fired with sawdust in a full-scale BFB boiler. In the case of peat, lesser increase in trace metal concentrations was observed, due to the higher initial trace metal concentrations of peat compared to sawdust. Despite the high removal rate of most of the trace metals in the ESP, the Directive emission limits for trace metals were exceeded in each of the RDF co-firing tests. The dominat trace metals in fluegas after the ESP were Cu, Pb and Mn. In the condensing wet scrubber, the flue gas trace metal emissions were reduced below the Directive emission limits, whenRDF pellet was used as a co-firing fuel together with sawdust and peat. High chlorine content of the RDFs enhanced the mercuric chloride formation and hence the mercury removal in the ESP and scrubber. Mercury emissions were lower than theDirective emission limit for total Hg, 0.05 mg/Nm3, in all full-scale co-firingtests already in the flue gas after the ESP. The pilot-scale experiments with aBFB combustor equipped with a fabric filter revealed that the fabric filter alone is able to reduce the trace metal concentrations, including mercury, in the flue gas during the RDF co-firing approximately to the same level as they are during the wood chip firing. Lower trace metal emissions than the Directive limits were easily reached even with a 40% thermal share of RDF co-firing with sawdust.Enrichment of trace metals in the submicron fly ash particle fraction because of RDF co-firing was not observed in the test runs where sawdust was used as the main fuel. The combustion of RDF pellets with peat caused an enrichment of As, Cd, Co, Pb, Sb, and V in the submicron particle mode. Accumulation and release oftrace metals in the bed material was examined by means of a bed material analysis, mass balance calculations and a reactor model. Lead, zinc and copper were found to have a tendency to be accumulated in the bed material but also to have a tendency to be released from the bed material into the combustion gases, if the combustion conditions were changed. The concentration of the trace metal in the combustion gases of the bubbling fluidised bed boiler was found to be a summary of trace metal fluxes from three main sources. They were (1) the trace metal flux from the burning fuel particle (2) the trace metal flux from the ash in the bed, and (3) the trace metal flux from the active alkali metal layer on the sand (and ash) particles in the bed. The amount of chlorine in the system, the combustion temperature, the fuel ash composition and the saturation state of the bed material in regard to trace metals were discovered to be key factors affecting therelease process. During the co-firing of waste fuels with variable amounts of e.g. ash and chlorine, it is extremely important to consider the possible ongoingaccumulation and/or release of the trace metals in the bed, when determining the flue gas trace metal emissions. If the state of the combustion process in regard to trace metals accumulation and/or release in the bed material is not known,it may happen that emissions from the bed material rather than the combustion of the fuel in question are measured and reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Today the limitedness of fossil fuel resources is clearly realized. For this reason there is a strong focus throughout the world on shifting from fossil fuel based energy system to biofuel based energy system. In this respect Finland with its proven excellent forestry capabilities has a great potential to accomplish this goal. It is regarded that one of the most efficient ways of wood biomass utilization is to use it as a feedstock for fast pyrolysis process. By means of this process solid biomass is converted into liquid fuel called bio-oil which can be burnt at power plants, used for hydrogen generation through a catalytic steam reforming process and as a source of valuable chemical compounds. Nowadays different configurations of this process have found their applications in several pilot plants worldwide. However the circulating fluidized bed configuration is regarded as the one with the highest potential to be commercialized. In the current Master’s Thesis a feasibility study of circulating fluidized bed fast pyrolysis process utilizing Scots pine logs as a raw material was conducted. The production capacity of the process is 100 000 tonne/year of bio-oil. The feasibility study is divided into two phases: a process design phase and economic feasibility analysis phase. The process design phase consists of mass and heat balance calculations, equipment sizing, estimation of pressure drops in the pipelines and development of plant layout. This phase resulted in creation of process flow diagrams, equipment list and Microsoft Excel spreadsheet that calculates the process mass and heat balances depending on the bio-oil production capacity which can be set by a user. These documents are presented in the current report as appendices. In the economic feasibility analysis phase there were at first calculated investment and operating costs of the process. Then using these costs there was calculated the price of bio-oil which is required to reach the values of internal rate of return of 5%, 10%, 20%, 30%, 40%, and 50%.