993 resultados para Biomass carbon


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (< 2 mu m), nanophytoplankton (2-20 mu m), and microphytoplankton (> 20 mu m) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13-3.43 and 0.09-1.92 d(-1) for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 mu g C 1(-1) d(-1) at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An elemental carbon (EC) record, covering the last 420 ka, was reconstructed using chemical oxidation method on a loess and paleosol sequence from the Lingtai section on the Chinese Loess Plateau. The EC record reveals the paleofire history and its relationship with climate and vegetation changes on the Chinese Loess Plateau. Our results show that the EC abundance is generally higher in the paleosols than in the loess layers, showing a glacial/interglacial pattern, which is coincident with biomass changes. This variation pattern indicates that paleofires were intensified when biomass accumulated and climate changed abruptly especially from wet to dry conditions. The EC abundance increases sharply at similar to 130 kaB.P., indicating a dramatic change in the vegetation and climate variation patterns. The occurrence of a peak value with the highest average EC abundance in the Holocene may reflect the occurrence of a major climate event at similar to 6 kaB.P., and may also be partly due to more frequent anthropogenic fire usages. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal investigations of size-fractionated biomass and production were carried out from February 1992 to May 1993 in Jiaozhou Bay, China. Microplankton assemblages were separated into three fractions: pico-(0.7-2 mu m), nano- (2-20 mu m) and netplankton (20-200 mu m). The biomass was measured as chlorophyll a (Chl a), particulate organic carbon (POC) and particulate organic nitrogen (PON). The production was determined by C-14 and N-15 tracer techniques. The seasonal patterns in biomass, though variable, were characterized by higher values in spring and lower values in autumn and summer (for Chl a only). The seasonal patterns in production, on the other hand, were more clear with higher values occurring in summer and spring, and lower values occurring in autumn and winter. Averaged over the whole study period, the respective proportions of total biomass accounted for by net-, nano- and picoplankton were 26, 45 and 29% for Chl a, 32, 33 and 35% for POC, and 26, 32 and 42% for PON. The contributions to total primary production by net-, nano- and picoplankton were 31, 35 and 34%, respectively. The respective proportions of total NH4+-N uptake accounted for by net-, nano- and picoplankton were 28, 33 and 39% in the daytime, and 10, 29 and 61% at night. The respective contributions to total NO3--N uptake by net-, nano- and picoplankton were 37, 40 and 23% in the daytime, and 13, 23 and 64% at night. Some comprehensive ratios, including C/N biomass ratio, Chl a/C ratio, C uptake/Chl a ratio, C:N uptake ratio and the f-ratio, were also calculated size separately, and their biological and ecological meanings are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three years of eddy covariance measurements were used to characterize the seasonal and interannual variability of the CO2 fluxes above an alpine meadow (3250 m a.s.l.) on the Qinghai-Tibetan Plateau, China. This alpine meadow was a weak sink for atmospheric CO2, with a net ecosystem production (NEP) of 78.5, 91.7, and 192.5 g C m(-2) yr(-1) in 2002, 2003, and 2004, respectively. The prominent, high NEP in 2004 resulted from the combination of high gross primary production (GPP) and low ecosystem respiration (R-e) during the growing season. The period of net absorption of CO2 in 2004, 179 days, was 10 days longer than that in 2002 and 5 days longer than that in 2003. Moreover, the date on which the mean air temperature first exceeded 5.0 degrees C was 10 days earlier in 2004 (DOY110) than in 2002 or 2003. This date agrees well with that on which the green aboveground biomass (Green AGB) started to increase. The relationship between light-use efficiency and Green AGB was similar among the three years. In 2002, however, earlier senescence possibly caused low autumn GPP, and thus the annual NEP, to be lower. The low summertime R-e in 2004 was apparently caused by lower soil temperatures and the relatively lower temperature dependence of R-e in comparison with the other years. These results suggest that (1) the Qinghai-Tibetan Plateau plays a potentially significant role in global carbon sequestration, because alpine meadow covers about one-third of this vast plateau, and (2) the annual NEP in the alpine meadow was comprehensively controlled by the temperature environment, including its effect on biomass growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex allivescens V. Krez., Scirpus distigmaticus L., Hippuris vulgaris L., and the submerged species Potamogeton pectinatus L. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) were markedly different among the vegetation zones, with lower Re and GPP in deeper water. NEP was highest in the Scirpus-dominated zone with moderate water depth, but lowest in the Potamogeton-zone that occupied approximately 75% of the total wetland area. Diurnal variation in CO2 flux was highly correlated with variation in light intensity and soil temperature. The relationship between CO2 flux and these environmental variables varied among the vegetation zones. Seasonal CO2 fluxes, including GPP, Re, and NEP, were strongly correlated with aboveground biomass, which was in turn determined by water depth. In the early growing season, temperature sensitivity (Q(10)) for Re varied from 6.0 to 8.9 depending on vegetation zone. Q(10) decreased in the late growing season. Estimated NEP for the whole deep-water wetland over the growing season was 24 g C m(-2). Our results suggest that water depth is the major environmental control of seasonal variation in CO2 flux, whereas photosynthetic photon flux density (PPFD) controls diurnal dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although respiration of organisms and biomass as well as fossil fuel burning industrial production are identified as the major sources, the CO2 flux is still unclear due to the lack of proper measurements. A mass-balance approach that exploits differences in the carbon isotopic signature (delta(13)C) of CO2 Sources and sinks was introduced and may provide a means of reducing uncertainties in the atmospheric budget. delta(13)C measurements of atmospheric CO2 yielded an average of - 10.3 parts per thousand relative to the Peedee Belemnite standard; soil and plants had a narrow range from -25.09 parts per thousand to -26.51 parts per thousand and averaged at -25.80 parts per thousand. Based on the fact of steady fractionation and enrichment during respiration of mitochondria, we obtained the emission Of CO2 of 35.451 mol m(-2) a(-1) and CO2 flux of 0.2149 mu mol m(-2) s(-)1. The positive CO2 flux indicated the Haibei Alpine Meadow Ecosystem a source rather than a sink. The mass-balance model can be applied for other ecosystem even global carbon cycles because it neglects the complicated process of carbon metabolism, however just focuses on stable carbon isotopic compositions in any of compartments of carbon sources and sinks. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess the impact of livestock grazing on the emission of greenhouse gases from grazed wetlands, we examined biomass growth of plants, CO2 and CH4 fluxes under grazing and non-grazing conditions on the Qinghai-Tibetan Plateau wetland. After the grazing treatment for a period of about 3 months, net ecosystem CO2 uptake and aboveground biomass were significantly smaller, but ecosystem CH4 emissions were remarkably greater, under grazing conditions than under non-grazing conditions. Examination of the gas-transport system showed that the increased CH4 emissions resulted from mainly the increase of conductance in the gas-transport system of the grazed plants. The sum of global warming potential, which was estimated from the measured CO2 and CH4 fluxes, was 5.6- to 11.3-fold higher under grazing conditions than under non-grazing conditions. The results suggest that livestock grazing may increase the global warming potential of the alpine wetlands. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To clarify the response of soil organic carbon (SOC) content to season-long grazing in the semiarid typical steppes of Inner Mongolia, we examined the aboveground biomass and SOC in both grazing (G-site) and no grazing (NG-site) sites in two typical steppes dominated by Leymus chinensis and Stipa grandis, as well as one seriously degraded L. chinensis grassland dominated by Artemisia frigida. The NG-sites had been fenced for 20 years in L. chinensis and S. grandis grasslands and for 10 years in A. frigida grassland. Above-ground biomass at G-sites was 21-35% of that at NG-sites in L. chinensis and S. grandis grasslands. The SOC, however, showed no significant difference between G-site and NG-site in both grasslands. In the NG-sites, aboveground biomass was significantly lower in A. frigida grassland than in the other two grasslands. The SOC in A. frigida grassland was about 70% of that in L. chinensis grassland. In A. frigida grassland, aboveground biomass in the G-site was 68-82% of that in the NG-site, whereas SOC was significantly lower in the G-site than in the NG-site. Grazing elevated the surface soil pH in L. chinensis and A. frigida communities. A spatial heterogeneity in SOC and pH in the topsoil was not detected the G-site within the minimal sampling distance of 10 m. The results suggested that compensatory growth may account for the relative stability of SOC in G-sites in typical steppes. The SOC was sensitive to heavy grazing and difficult to recover after a significant decline caused by overgrazing in semiarid steppes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of N-15 tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of N-15 tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrate from agricultural runoff are a significant cause of algal blooms in estuarine ecosystems such as the Chesapeake Bay. These blooms block sunlight vital to submerged aquatic vegetation, leading to hypoxic areas. Natural and constructed wetlands have been shown to reduce the amount of nitrate flowing into adjacent bodies of water. We tested three wetland plant species native to Maryland, Typha latifolia (cattail), Panicum virgatum (switchgrass), and Schoenoplectus validus (soft-stem bulrush), in wetland microcosms to determine the effect of species combination and organic amendment on nitrate removal. In the first phase of our study, we found that microcosms containing sawdust exhibited significantly greater nitrate removal than microcosms amended with glucose or hay at a low nitrate loading rate. In the second phase of our study, we confirmed that combining these plants removed nitrate, although no one combination was significantly better. Furthermore, the above-ground biomass of microcosms containing switchgrass had a significantly greater percentage of carbon than microcosms without switchgrass, which can be studied for potential biofuel use. Based on our data, future environmental groups can make a more informed decision when choosing biofuel-capable plant species for artificial wetlands native to the Chesapeake Bay Watershed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Nazaré Canyon on the Portuguese Margin (NE Atlantic) was sampled during spring-summer for three consecutive years (2005–2007), permitting the first inter-annual study of the meiofaunal communities at the Iberian Margin at two abyssal depths (~3500 m and ~4400 m). Using new and already published data, the meiofauna standing stocks (abundance and biomass) and nematode structural and functional diversity were investigated in relation to the sediment biogeochemistry (e.g. organic carbon, nitrogen, chlorophyll a, phaeopigments) and grain size. A conspicuous increase in sand content from 2005 to 2006 and decrease of phytodetritus at both sites, suggested the occurrence of one or more physical disturbance events. Nematode standing stocks and trophic diversity decreased after these events, seemingly followed by a recovery/recolonisation period in 2007, which was strongly correlated with an increase in the quantity and bioavailability of phytodetrital organic matter supplied. Changes in meiofauna assemblages, however, also differed between stations, likely because of the contrasting hydrodynamic and food supply conditions. Higher meiofauna and nematode abundances, biomass and trophic complexity were found at the shallowest canyon station, where the quantity, quality and bioavailability of food material were higher than at the deeper site. The present results suggest that even though inter-annual variations in the sedimentary environment can regulate the meiofauna in the abyssal Nazaré Canyon, heterogeneity between sampling locations in the canyon were more pronounced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global ocean phytoplankton biomass (C-phyto) and total particulate organic carbon (POC) stocks have largely been characterized from space using passive ocean color measurements. A space-based light detection and ranging (lidar) system can provide valuable complementary observations for C-phyto and POC assessments, with benefits including day-night sampling, observations through absorbing aerosols and thin cloud layers, and capabilities for vertical profiling through the water column. Here we use measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to quantify global C-phyto and POC from retrievals of subsurface particulate backscatter coefficients (b(bp)). CALIOP b(bp) data compare favorably with airborne, ship-based, and passive ocean data and yield global average mixed-layer standing stocks of 0.44 Pg C for C-phyto and 1.9 Pg for POC. CALIOP-based C-phyto and POC data exhibit global distributions and seasonal variations consistent with ocean plankton ecology. Our findings support the use of spaceborne lidar measurements for advancing understanding of global plankton systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately 500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity.