524 resultados para Biodegradação anaeróbia
Resumo:
The anaerobic treatment of sewage is widely employed in Brazil and it is an appreciated way for the treatment of effluents, helping to reduce the environmental impact in rivers. The methane gas obtained from the process can be applied to improve the energetic efficiency of the system, reducing the amount of waste and the cost of the treatment process. This work presents the net energy balance of anaerobic reactors applied to the treatment of sewage. The analysis was performed considering full-scale and laboratory-scale treatment systems. In laboratory scale, the results from three kinds of systems were compared regarding the biological treatment of greywater. Two of them (UASB7 and UASB12) were anaerobic and the other one was a combined anaerobic-aerobic system (UASB7/SBR6). Greywater methanization (compared to theoretical maximum) was calculated considering 100% removal (g BOD/day), the literature percentage removal and the anionic surfactant presence in the effluentt. For each of these three cases, the efficiencies were, respectively, 16.9%, 43.6% and 51.3% in UASB7 reactor, 25.6%, 50.3% and 59.2% in UASB12 reactor and 30.6%, 61.2% and 71.9% in UASB7/SBR6 reactor. The energetic potential was found to be 4.66x10-4, 7.77x10-4 and 5.12x10-4 kWh/L for the UASB7, UASB12 and UASB7/SBR6 reactors, respectively. The pumping system, the aeration (in the anaerobic-aerobic system) and the temperature controlled heating system were considered to calculate the energetic consumption. However, the third one was not employed since tropical regions like Brazil do not need heating systems and also because of its high energetic consumption. The calculated net energy balance in the reactors was negative in the case of greywater, respectively -0.16, -0.28 and -0.18 kWh/L for the reactors UASB7, UASB12 and UASB7/SRB6. In full scale (ETE Jardim das Flores - Rio Claro, SP), the average energy... (Complete abstract click electronic access below)
Resumo:
The research aims to propose grants for development of Municipal Plan for the Management of Organic Solid Waste generated in the municipality of Rio Claro. The research universe was composed of organic waste generators establishments (markets and grocers). From the registry of commercial establishments provided by the municipal government were identified who presented this typology, which totaled 38 establishments. In this universe the interview was conducted in 15 establishments obtained by directed sampling based on the characteristics of size, type and location. The data collected were the amount generated, disposal of waste, waste separation, collection frequency, reasons for the disposal of waste, frequency of purchase of products. From the data obtained in the field, we estimated the total generation of organic waste in this segment for the municipality. Then, the estimated costs for implementation and operation of a composting center, a way to subsidize the implementation of the management plan was carried out. We opted for the aerobic composting process by the simplicity of operation and because it is a technique already known. The average waste generation was established by tracks (size) with: stores up to 4 boxes (classified as small) generate on average 1511 kg / month, 40% of organic waste, the 5-9 boxes (small/midsize) generate on average 4338 kg / month, 35% organic and the 10 to 19 boxes (midsize) generate on average 7647 kg / month with 32% organic. In total establishments generate 105 t/ month of waste, with 35t / month of organics. 94% of establishments are in font segregation of waste into recyclable, organic and waste, indicating that the proposed management of organic waste is amenable to application without many changes in existing routine in stores. Recyclables are sent for recycling through selective collection held by the cooperative, while the organics are destined for the landfill and feed. The results indicate...
Resumo:
The treatment of domestic and industrial effluents through Wastewater Treatment Plants (WTPs) generates a residue termed sewage sludge, rich in organic matter, high-volume, occasionally containing pathogens and heavy metals. The sludge generation can minimize the benefits brought by the treatment of sewage, because this residue does not always receive appropriate treatment before final disposal. The disposal is another problem related to sludge. Landfills generally does not have physical space and alternatives such as the use in agriculture requires an intense treatment that could be in many cases operational or economic unfeasible. The objective of this work is the theoretical research about the processes of stabilization of the sludge by anaerobic digestion and the methanogenic activity during the process. Through analysis of each step and contemplating each relevant factor in anaerobic digestion process in order to optimize them, we proposed a theoretical model of reactors capable of stabilize the sludge, reduce its volume and eliminate pathogens. The obtained configuration consists of two anaerobic reactors connected in series. The first one operates in the range mesophilic temperature (35 ° C) and has higher hydraulic retention time (25 days) working primarily in the stabilization of organic matter present in the sludge and producing biogas, whereas the second one operates in the thermophilic range (55 ° C) in order to eliminate pathogens, and to reduce the volume. The hydraulic retention time in the second reactor is lower (10 days). Both mesophilic and thermophilic processes were efficient in what was proposed, promoting the stabilization of organic matter present in the sludge and significant reduction of pathogens. As a final step with the sludge previously digested, it is indicated a final dehydration... (Complete abstract click electronic access below)
Resumo:
The geophysical methods are widely applied in environmental characterization and monitoring studies. The resistivity method, in particular, has a wide area of applications, being effective in studies of solid waste landfills. The present work propose a geophysical monitoring in the Cordeirópolis city controlled landfill and analyze relationships between variation of electrical resistivity parameter, the residence time of the solid waste in landfill, the rainfall in the region and the organic matter biodegradation processes. The study has no monitoring system to control the products generated in the organic matter decomposition found in waste such as sealing blanket or leachate or gas drains. The results shows that the electrical resistivity parameter was effective in monitoring the landfill contamination plume
Resumo:
Não disponível
Resumo:
The present study aimed to analyze the effects of exercise performed at aerobic/anaerobic transition on non-alcoholic hepatic steatosis (NAHS) markers in diabetic rats. Adult (60 days) male Wistar rats were divided into 4 groups: sedentary control (SC), trained control (TC), sedentary diabetic (i.v. alloxan injection) (SD) and trained diabetic (TD). At the beginning of the experiment, all the animals were submitted to maximal lactate steady state test (MLSS) in order to identify the aerobic/anaerobic metabolic transition during swimming exercise. The trained groups were submitted to swimming, supporting overloads (% of body weight – b.w.) equivalent to MLSS intensity, 1h/day, 5 days/week, during 8 weeks. We analyzed: serum ALT, AST, albumin, glucose and free fat acids (FFA), body weight and total lipid concentrations in the liver. The diabetic groups showed higher (ANOVA two-way, p<0.05) serum glucose (SD=200% and TD= 150%) and weight loss (SD= 15.0% and TD= 8.5%) compared to controls and the SD showed higher glucose concentration and weight loss when compared to TD. The work load (% b.w.) equivalent to the MLSS was lower in TD (4.7%) than in TC (5.6%) group. The NAHS markers (U/L) did not show... (Complete abstract click electronic access below)
Resumo:
Supermarket plastic bags are produced by high density polyethylene (HDPE) and low density polyethylene (LDPE) resins. In Brazil, are produced annually around 150 plastic bags per capita. Disposed in landfills, the supermarket plastic bags prevent the passage of water by slowing the breakdown of biodegradable materials and hindering compaction of waste, according to their low degradability. This work investigated the biodegradation of PE bags containing additive oxo-biodegradable and bags without additives: buried in soil columns, exposed in a controlled environment and exposed to air. The analysis methods used to assess the changes brought in the bags with respect to microbial action and exposure time were weight loss, thickness measurement, infrared (FTIR), scanning electron microscopy (SEM) and contact angle. The results showed that the use of prodegradant agents such as oxobiodegradable additives in polyethylene bags, buried in soil for 270 days, was not efficient to accelerate the biodegradation by microorganisms. It seems that these additives have been more efficient to degrade the colored pigmentation of printed bags, under the influence of light and heat.
Resumo:
A produção de lixo pela humanidade é inevitável, porém, o destino dos residuos sólidos e seu acondicionamento inadequado têm trazido graves problemas ambientais. Dentre os resíduos sólidos, os plásticos merecem destaque, pois cresceram significativamente em uso e descarte, totalizando 20% do volume mundial de lixo. Isto decorre de algumas das propriedades destes materiais, como durabilidade, resistência, leveza e baixo custo de produção. Nas grandes cidades brasileiras, 7% do lixo produzido correspondem a produtos de plástico em filme, geralmente usado em aplicações de curta duração, como o polietileno. Este material persiste no ambiente por décadas, sendo, portanto, resistente à degradação. Diversos destinos podem ser tomados pelo resíduo de polietileno descartado, como a deposição em lixões e aterros sanitários, incineração, reciclagem e biodegradação. A biodegradação pode ser definida como a degradação catalisada por atividade biológica, levando, no final do processo, à mineralização e/ou formação de biomassa. Na natureza, a destruição destes materiais se dá, na verdade, por meio da “degradação ambiental”, na qual atuam sinergeticamente a biodegradação, a fotooxidação, a termo-oxidação e a hidrólise. Neste sentido, desde os anos 1970, diferentes formulações foram propostas para otimizar a susceptibilidade do PE à degradação ambiental. Sabe-se que o PE está sujeito a sofrer mudanças quando exposto à luz ultravioleta e/ou ao calor, e que estas modificações podem alterar a resposta dos microrganismos no processo de biodegradação. Desta forma, este estudo analisou as modificações ocasionadas por tratamentos com luz ultravioleta, calor e exposição ao sol, bem como a resposta da microbiota natural do solo a estes tratamentos, através de análises de espectroscopia... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
The purpose of this project is to verify whether anaerobic reactors applied to sewage treatment are energetically self-sufficient. This evaluation can be made by balancing the methane produced through the anaerobic transformation stages (hydrolysis, acidogenesis, acetogenesis and methanogenesis) and the reactor energy consumption requirements. The original project included methanogenic activity tests, which could not be performed due to setbacks in the installation of an analytical instrument. Scientific articles about bench- and full-scale anaerobic reactors were investigated instead. An average substrate-to-methane conversion efficiency of 58,2±18,6% was found for the bench-scale reactors and higher efficiencies (89,2%) were found for the cases which had higher Organic Loading Rates (OLRs) values. The average energy output was 0,013 kWh/Lsewage, value unable to meet the energy needs for the reactor operation, considering equipments normally used such as temperature controller. This balance can become positive if few hypotheses are made, for example (i) to eliminate the use of temperature controller (ii) to alter the operation pattern from continuous to intermittent. Based on energy balance assessment of eight bench-scale reactors, it was observed that the implementation of a system for biogas utilization is not energetically feasible. However, interesting results were found for a full-scale sewage treatment plant, ETE Ouro Verde – Foz do Iguaçu, PR, Brazil. Even though its substrate-tomethane conversion efficiency was about 10% only, the energy balance was quite positive, with energy consumption of 68 kWh/month and energy production of 660 kWh/month. This analysis leads us to conclude that energy recovery from full-scale sewage treatment plants should be practiced by other plants
Processos biotecnológicos para a detoxificação de resíduos contendo acetonitrila gerados no IB-UNESP
Resumo:
Não disponível
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This project aimed to analyze the feasibility of the methane yield associated to the anaerobic digestion of brewery residues, checking whether the energetic balance of the system is favorable. The methane yield efficiency was calculated for the parameters of two papers that treated solids with a particle-size <1mm. Theses solids are not degraded in conventional treatment systems. Calculations were based in the reactions of anaerobic degradation of the macromolecules that compose brewery residues, considering the theoretical production and the effective production of methane. The results were 50.44% and 52.86%. Regarding to the energy balance of the anaerobic treatment, we noted the high influence of the selection and operating regime of electrical equipment over the potential energy. The best situation, in which the energetic self-sufficiency was reached, was observed when using the mixer under an intermittent regime (1min/h), without employing the heating recirculator, for the maximum organic loading of 4.0 gVS/L.day (days 248-258). In this case, the system would generate an amount of energy equal to 0.0356 kWh/day, able to overcome the energy required by the equipment in about 6.5 times. Moreover, we also noted the interference of the application of different solid loadings in the reactors, once the application of the higher organic load generated 5 times more energy than the application of the smaller one
Resumo:
Os biossurfactantes apresentam inúmeras vantagens, como baixa toxicidade, biodegradabilidade e alta estabilidade, mas não são amplamente utilizados devido ao custo de produção. A utilização de substratos baratos, linhagens mutantes que associados à otimização das condições de cultivo pode levar a uma redução nos custos, possibilitando assim a substituição dos surfactantes sintéticos pelos biológicos. Uma maneira empregada para maximizar a produção dos biossurfactantes é a limitação de nutrientes. Os esforços empregados nesse sentido são direcionado para as proporções carbono: nitrogênio, entretanto os efeitos dos elementos traços são pouco conhecidos. Devido a esses fatores, o presente trabalho avaliou a importância dos seguintes elementos traços: ferro, zinco, cobalto, cobre, manganês e do sal citrato de sódio dihidratado, nas fermentações realizadas utilizando o mutante de Pseudomonas aeruginosa LBI 2A1. Para tanto foram realizadas fermentações em frascos Erlenmeyer, onde se utilizou diferentes concentrações desses elementos. A influência dos mesmos na produção de ramnolipídios foi constatada, uma vez que a produção desse biotensoativo foi aumentada em mais de três vezes alterando apenas a concentração de um único elemento traço (Fe). Os experimentos realizados permitem, também, inferir a respeito das melhores concentrações desses micronutrientes para a produção de ramnolipídios
Resumo:
Ethanol production has gained great prominence in the investment new renewable energy sources and Brazil is among the leaders of production. However, this activity generates large amounts of waste being the largest volume of the sugar cane bagasse. For this reason looking up ways to use this material as burning for energy production and composition of forage in the diet of ruminants, however there are difficulties to use this production for this last one. This paper proposes a microbiological treatment with Lentinula edodes and Pleurotus ostreatus in order to enable the bagasse in ruminant feed composition in order to be used more noble than their burning. After treatment with the fungus, tests were performed for quantifying crude protein by the method of Kjeldhal. It was verified that the protein content in the pure bagasse was 1.0% after fermentation the protein content was 4.2% with L.edodes and 4.9% with P. ostreatus. To evaluate the protein quality of the product fermented by L. edodes and P. ostreatus was applied microbiological method for growth of Enterococcus zimogenes verifying that after fermentation the protein quality was 76 and 27.4% with L. edodes and P.ostreatus, respectively, compared with casein. The quantification of amino acids showed significant improvement of protein with altered amino acid profile with treatments of fungos. About of DQO and BOD were also found considerable improvement besides considerable drop in toxicity as measured by acute toxicity test with Daphinia similis
Resumo:
The increase in the oil price and the current trend of using renewable raw materials for the production of chemicals renew the interest in the production of biobutanol that, produced by fermentation of agricultural raw materials, can be used as a component of gasoline and diesel. With the commercialization of new fuels, environmental damages due to spills can occur. Among other techniques, the clean-up of these contaminated areas can be achieved with bioremediation, a technique based on the action of microorganisms, which has the advantage of turning hazardous contaminants into non toxic substances such as CO2, water and biomass. Thus, bearing in mind the use of biobutanol in the near future as a gasoline extender and due to the lack of knowledge of the effects of butanol on the biodegradation of gasoline, this work aimed to assess the aerobic biodegradation of butanol/gasoline blends and butanol/diesel (20% v/v), being the latter compared to the ethanol/gasoline blend and biodiesel/diesel (20% v/v), respectively. Two experimental techniques were employed, namely the respirometric method and the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test. In the former, experiments simulating the contamination of natural environments were carried out in biometer flasks, used to measure the microbial CO2 production. The DCPIP test assessed the capability of four inocula to biodegrade the fuel blends. In butanol/gasoline experiments the addition of the alcohols to the gasoline resulted in positive synergic effects on the biodegradation of the fuels in soil and...(Complete abstract click electronic access below)