994 resultados para Benthocosm F2
Resumo:
O amendoim (Arachis hypogaea) é uma planta que durante as fases iniciais do seu desenvolvimento sofre mais intensamente a competição das plantas daninhas, prejudicando sensivelmente sua produção. Uma forma muito eficiente de solucionar esse problema é o uso do herbicida trifluralin; no entanto, seu uso pode prejudicar a micorrização, uma associação benéfica formada por fungos e raízes da planta hospedeira. Este trabalho objetivou avaliar o efeito do herbicida trifluralin e de duas espécies de fungos micorrízicos (Gigaspora margarita e Acaulospora scrubiculata) na micorrização e no crescimento inicial de plantas de amendoim. O trabalho foi realizado na casa de vegetação do Centro de Ciências Agrárias, Ambientais e Biológicas da Universidade Federal do Recôncavo da Bahia, no município de Cruz das Almas - BA. Utilizou-se o cultivar de amendoim Vagem Lisa. Os tratamentos testados envolveram aplicação (C/H) ou não (S/H) de herbicida e inoculação individual de dois fungos micorrízicos: Gigaspora margarita (F1) e Acaulospora scrubiculata (F2), sendo os seguintes: S/H + F1, S/H + F2, C/H + F1, C/H + F2, C/H S/F (sem fungo) e S/H S/F. O delineamento experimental foi inteiramente ao acaso, em esquema fatorial (2 x 2) + 2, com quatro repetições. Os resultados mostraram que a colonização micorrízica para Gigaspora margarita foi de 63% e, quando se aplicou o herbicida, de 44%; Acaulospora scrubiculata apresentou baixo índice de colonização (5,75% e 1%, sem e com herbicida, respectivamente); a eficiência micorrízica foi superior na associação com G. margarita; a dependência micorrízica foi aumentada na presença do herbicida para as duas espécies de fungo inoculadas; a altura da planta, o volume de raízes, a massa seca da parte aérea e das raízes e a massa seca da planta foram superiores aos dos demais tratamentos. Conclui-se que o herbicida trifluralin prejudica a micorrização e o crescimento inicial das plantas de amendoim. A espécie de fungo Gigaspora margarita promove o crescimento inicial das plantas de amendoim, porém a espécie Acaulospora scrubiculata não foi eficiente para promover esse crescimento.
Characterization of Leaf-Type Ferredoxin-NADP+ Oxidoreductase (FNR) Isoforms in Arabidopsis thaliana
Resumo:
Life on earth is based on sunlight, which is captured in chemical form by photosynthetic reactions. In the chloroplasts of plants, light reactions of photosynthesis take place at thylakoid membranes, whereas carbon assimilation reactions occur in the soluble stroma. The products of linear electron transfer (LET), highly-energetic ATP molecules, and reducing power in the form of NADPH molecules, are further used in the fixation of inorganic CO2 molecules into organic sugars. Ferredoxin-NADP+ oxidoreductase (FNR) catalyzes the last of the light reactions by transferring electrons from ferredoxin (FD) to NADP+. In addition to LET, FNR has been suggested to play a role in cyclic electron transfer (CET), which produces ATP without the accumulation of reducing equivalents. CET is proposed to occur via two putative routes, the PGR5- route and the NDH-route. In this thesis, the leaf-type FNR (LFNR) isoforms LFNR1 and LFNR2 of a model organism, Arabidopsis thaliana, were characterized. The physiological roles of LFNRs were investigated using single and double mutant plants. The viability of the single mutants indicates functionality of both isoforms, with neither appearing to play a specific role in CET. The more severe phenotype of low-temperature adapted fnr2 plants compared to both wild-type (WT) and fnr1 plants suggests a specific role for LFNR2 under unfavorable growth conditions. The more severe phenotype of the fnr1 x fnr2 (F1 generation) plants compared to single mutants reflects down-regulated photosynthetic capacity, whereas slightly higher excitation pressure indicates mild over-excitation of electron transfer chain (ETC). However, induction of CET and various photoprotective mechanisms enable adaptation of fnr1 x fnr2 plants to scarcity of LFNR. The fnr1 fnr2 plants (F2 generation), without detectable levels of LFNR, were viable only under heterotrophic conditions. Moreover, drought stress induced acceleration of the rate of P700 + re-reduction in darkness was accompanied by a concomitant up-regulation of the PGR5-route specific components, PGR5 and PGRL1, demonstrating the induction of CET via the PGR5-route. The up-regulation of relative transcriptional expression of the FD1 gene indicates that the FD1 isoform may have a specific function in CET, while no such role could be defined for either of the LFNR isoforms. Both the membrane-bound and soluble LFNR1 and LFNR2 each appear as two distinct spots after 2D-PAGE with different isoelectric points (pIs), indicating the existence of post-translational modifications (PTMs) which do not determine the membrane attachment of LFNR. The possibility of phosphorylation and glycosylation PTMs were excluded, but all four LFNR forms were shown to contain acetylated lysine residues as well as alternative N-termini. N-terminal acetylation was shown to shift the pI of both LFNRs to be more acidic. In addition, all four LFNR forms were demonstrated to interact both with FD1 and FD2 in vitro
Resumo:
Herbicides and plant growth regulators are often used in sugarcane management. However, the use of non-selective pesticides can cause adverse effects on the efficiency of beneficial insects in integrated pest management. Within this context, this study aimed to evaluate the effect of such products on the immature stages of the parasitoid Trichogramma galloi. Eggs of Diatraea saccharalis containing the parasitoid at the egg-larva stage and at the prepupal and pupal stages were immersed in test solutions of the following pesticides (maximum recommended doses for sugarcane): herbicides clomazone and diuron + hexazinone, and plant growth regulators trinexapac-ethyl and sulfometuron-methyl. The biological properties evaluated were emergence (F1 and F2) and number of eggs parasitized by T. galloi (F1). The products were classified according to percentage of reduction in emergence and parasitism: harmless (<30%), slightly harmful (30-79%), moderately harmful (80-99%) and harmful (>99%). The pesticides evaluated were considered to be harmless or slightly harmful to immature T. galloi and, thus, their use should be preferred for preserving this parasitoid species in sugarcane management programs.
Resumo:
Populações de azevém resistente aos inibidores da enzima ALS têm aumentado rapidamente nos campos cultivados. Para o manejo da resistência, são necessários estudos de herança da resistência, os quais permitem entender a evolução da resistência, a estrutura genética da população e a dinâmica de adaptação dos biótipos resistentes. Este trabalho teve como objetivo identificar o tipo de herança, o número de genes envolvidos e o grau de resistência dos biótipos de azevém, homozigotos e heterozigotos, resistentes ao iodosulfuron. A partir da seleção dos biótipos homozigoto resistente (R) e homozigoto suscetível (S), foram realizados cruzamentos (R x S) para obtenção de plantas F1, e estas, cruzadas para obtenção da F2, e realizaram-se retrocruzamentos entre plantas F1 e os respectivos genitores masculinos e femininos resistentes (RCr) e sensíveis (RCs). As sementes F1, F2, RCr, RCs e dos genitores foram semeadas em bandejas e avaliadas, com aplicação do iodosulfuron, quanto à sua suscetibilidade ou resistência. Plantas F1 e dos genitores foram tratadas com doses crescentes do herbicida. A avaliação de controle dessas plantas pelo iodosulfuron foi feito por meio de notas (0 a 100), referentes aos sintomas de intoxicação e pela massa da matéria seca da parte aérea acumulada. Os genitores masculino ou feminino transmitiram a característica para a prole, sendo esta 100% resistente, indicando gene de resistência dominante. A geração F2 apresentou segregação 3:1 resistente/suscetível, confirmando a característica de dominância. O teste de dominância das plantas F1 evidenciou que as plantas homozigotas resistentes e as heterozigotas apresentam grau de resistência semelhante. Conclui-se que a resistência do azevém ao iodosulfuron é codificada por gene dominante nuclear com dominância completa.
Resumo:
Dense molecular genetic maps are used for an efficient quantitative trait loci (QTL) mapping and in the marker-assisted selection programs. A dense genetic map was generated with 139 microsatellite markers using 256 F2 plants generated by the crossing of two tropical maize inbred lines (L-02-03D and L-20-01F). This map presented 1,858.61 cM in length, where 10 linkage groups were found spanned, with an average interval of 13.47 cM between adjacent markers. Seventy seven percent of the maize genetic mapping bins were covered, which means an increase of 14% coverage in relation to the previous tropical maize maps. The results provide a more detailed and informative genetic map in a tropical maize population representing the first step to make possible the studies of genetic architecture to identify and map QTL and estimate their effects on the variation of quantitative traits, thus allowing the manipulation and use in tropical maize breeding programs.
Resumo:
(Hybridization among wild passionflower species). Passion fruits are appreciated for their ornamental value, since their flowers are showy and display a wide variety of colors. In addition, many hybrids have been produced and used in other countries. The genotypes used in selection of plants with ornamental characteristics are hybrid progenies which are used in various crossing strategies. Thus, the aim of this work was to obtain interspecific hybrids, perform backcrossing and obtain progenies from crossings between hybrids, and to determine the reproductive compatibility between the progenitors involved. The percentage of fertilized flowers, germination, and the number of fruits, seeds and plants obtained through crossing were recorded. A series of 374 crossings involved seven species and two hybrids. Crossings such as Passiflora gibertii N. E. Brown vs. P. kermesina Link & Otto and P. gibertii vs. P. alata Curtis did not produce seeds. The largest percentage of fertilized flowers (86%) was recorded for the crossing P. gardneri Mast.vs. P. cincinnata Mast.; yet, the seeds produced did not show endosperm. Interspecific hybrids were obtained from the crossings P. gardneri vs. P. alata, P. watsoniana Mast.vs. P. alata, P. watsoniana vs. P. gardneri and P. gardneri vs. P. gibertii. Seeds generated from backcrossings involving the hybrids P. sublanceolata (sin. P. palmeri var. sublanceolata (Killip) J. M. MacDougal) vs. P. foetida var. foetida L. (HD13-133 and HD13-141) and F2 reached high germination percentages.
Resumo:
Seven sources of resistance to the two predominant races IB-1 and IB-9 of the rice blast pathogen Pyricularia grisea were selected based on leaf blast reaction in tests conducted under controlled greenhouse conditions. Crosses involving resistant and susceptible parents were made to study the inheritance of the disease reaction for different sources of resistance. The F1 and F2 progenies of all crosses, including backcrosses to resistant and susceptible parents, were tested for reaction to leaf blast. The data showed that resistance is controlled by one to three genes that segregate independently in most of the donors. Non-allelic interaction among resistance genes, including dominant epistasis, was identified.
Resumo:
Six common bean cultivars were crossed in diallel and the segregant populations were assessed in the F2 and F3 generations to compare methodologies for parental selection in a breeding program based on hybridization. The cultivars involved in the diallel were A 114, A 77, ESAL 686, Milionário, Carioca, and Flor de Mayo. The segregant F2 and F3 generations were assessed on the experimental campus of the Universidade Federal de Larvas, in July 1994. It was found that the cultivars differed in their general combining ability (GCA). Flor de Mayo, which belongs to the Durango race, had the largest positive GCA estimate for grain field, and the cultivars from the Mesoamerican race, Milionário and A 114, the smallest GCA estimates. For flowering, the cultivar that most contributed to reduced plant cycle was ESAL 686. There was agreement among the results obtained from the diallel and the estimates of the parameter m + a of the populations. However, it was evident that the estimate of genetic variance of the populations should be considered as a condition to identify the hybrid population that will produce a line with high performance.
Resumo:
Bean golden mosaic is the most important viral disease of the bean crop (Phaseolus vulgaris L.) in Latin America. The genetics of resistance to a Brazilian strain of bean golden mosaic virus (BGMV), was studied in a 4 x 4 diallel cross without reciprocals, among the parental genotypes DOR 303, EMGOPA 201 Ouro, Carnaval, and Redlands Greenleaf C. Seedlings of the four parents, six F1 hybrids, 12 backcrosses, and F2 generations for each combination were inoculated on the eighth day after sowing by exposure to a viruliferous whitefly (Bemisia tabaci Genn.) population for 24 h, in a glasshouse, prior to transplantation to field conditions. The full set of two parents, F1, F2 and respective backcrosses for each combination was considered to be a family. Data were recorded and analyzed for foliar yellowing, plant dwarfing, and pod malformation, using a randomized block design, with two replications. Weighted generation mean analysis was performed for each of the six families. An additive gene action model was significant for the three characteristics evaluated. On the other hand, non-additive gene action had greater absolute value in most cases. Resistance to foliar yellowing conferred by genes from DRO 303 was highly heritable and was expressed equally well in the different genetic backgrounds evaluated. Such resistance may be oligogenic. Broad- and narrow-sense heritabilities were relatively high for all response traits. The three traits studied were all positively correlated, indicating that they can be simultaneously selected for enhancement. The highest correlation coefficient was obtained for dwarfing x pod malformation.
Resumo:
Bean (Phaseolus vulgaris) lines P.I. 207262 and AB 136, both resistant to delta and kappa races of Colletotrichum lindemuthianum, were crossed with Michelite, Dark Red Kidney, and Perry Marrow, susceptible to both races, and with Cornell 49-242, resistant to delta and susceptible to kappa. F1 and F2 reactions demonstrated that P.I. 207262 carries duplicate dominant genes for resistance to the delta race; AB 136 carries a dominant gene. These resistance genes are independent of the Are gene from Cornell 49-242. With respect to the kappa race, F1 and F2 data showed that the resistance controlled by P.I. 207262 and by AB 136 depends on a single dominant gene. Complementary factors were involved with AB 136 resistance to the delta race and with P.I. 207262 resistance to kappa.
Resumo:
A new viviparous mutant of maize (Zea mays L.), associated with genetic instability and designated viviparous-12 (vp12), was identified in a synthetic Tuxpeño adapted to tropical regions. In the present work, the linkage group of this new locus was determined. Progenies of inbred line L477 segregating for the vp12 mutant were crossed with waxy-marked reciprocal translocation stocks. The phenotypic frequencies of the wx and vp12 mutants were analyzed in F2 progenies. The results demonstrated that the Viviparous-12 locus of maize is located on the long arm of chromosome 6.
Resumo:
The objective of this study was to identify restriction fragment length polymorphism (RFLP) markers linked to QTLs that control aluminum (Al) tolerance in maize. The strategy used was bulked segregant analysis (BSA) and the genetic material utilized was an F2 population derived from a cross between the Al-susceptible inbred line L53 and Al-tolerant inbred line L1327. Both lines were developed at the National Maize and Sorghum Research Center - CNPMS/EMBRAPA. The F2 population of 1554 individuals was evaluated in a nutrient solution containing a toxic concentration of Al and relative seminal root length (RSRL) was used as a phenotypic measure of tolerance. The RSRL frequency distribution was continuous, but skewed towards Al-susceptible individuals. Seedlings of the F2 population which scored the highest and the lowest RSRL values were transplanted to the field and subsequently selfed to obtain F3 families. Thirty F3 families (15 Al-susceptible and 15 Al-tolerant) were evaluated in nutrient solution, using an incomplete block design, to identify those with the smallest variances for aluminum tolerance and susceptibility. Six Al-susceptible and five Al-tolerant F3 families were chosen to construct one pool of Al-susceptible individuals, and another of Al-tolerant, herein referred as "bulks", based on average values of RSRL and genetic variance. One hundred and thirteen probes were selected, with an average interval of 30 cM, covering the 10 maize chromosomes. These were tested for their ability to discriminate the parental lines. Fifty-four of these probes were polymorphic, with 46 showing codominance. These probes were hybridized with DNA from the two contrasting bulks. Three RFLPs on chromosome 8 distinguished the bulks on the basis of band intensity. DNA of individuals from the bulks was hybridized with these probes and showed the presence of heterozygous individuals in each bulk. These results suggest that in maize there is a region related to aluminum tolerance on chromosome 8
Resumo:
Six wheat genotypes and their F1 and F2 generations were exposed to the action of Helminthosporium sativum culture filtrates to examine the genetics of hexaploid wheat resistance. The objective was to improve the efficiency of breeding programs by identifying the action and number of genes involved in the resistance. The varied response of the tested genotypes to the culture filtrates allowed division of the genotypes into four groups: resistant, moderately resistant, moderately susceptible and susceptible. This variability was detected in the progeny, suggesting that the parents have distinct genetic constitutions. Additive gene action predominated and genetic gain was shown to be possible through selection. The genetic control of the resistance trait seems to be complex because of the presence of gene interaction and the difficulty of eliminating the environmental effects. The inheritance seems to be oligogenic