987 resultados para Bayesian Modelling
Resumo:
One of the world's largest wollastonite deposits was formed at the contact of the northern Hunter Mountain Batholith (California, USA) in Paleozoic sediments. Wollastonite occurs as zones of variable thickness surrounding layers or nodules of quartzite in limestones. A minimum formation temperature of 650 degrees C is estimated from isolated periclase-bearing lenses in that area. Contact metamorphism of siliceous carbonates has produced mineral assemblages that are consistent with heterogeneous, and partly limited infiltration of water-rich fluids, compatible with O-18/O-16 and C-13/C-12 isotopic patterns recorded in carbonates. Oxygen isotope compositions of wollastonites in the study area may also not require infiltration of large quantities of externally-derived fluids that were out of equilibrium with the rocks. 8180 values of wollastonite are high (14.8 parts per thousand to 25.0 parts per thousand; median: 19.7 parts per thousand) and close to those of the host limestone (19.7 parts per thousand to 28 parts per thousand; median: 24.9 parts per thousand) and quartz (18.0 parts per thousand. to 29.1 parts per thousand; median: 22.6 parts per thousand). Isotopic disequilibrium exists at quartz/wollastonite and wollastonite/calcite boundaries. Therefore, classical batch/Rayleigh fractionation models based on reactant and product equilibrium are not applicable to the wollastonite rims. An approach that relies on local instantaneous mass balance for the reactants, based on the wollastonite-forming reaction is suggested as an alternative way to model wollastonite reaction rims. This model reproduces many of the measured delta O-18 values of wollastonite reaction rims of the current study to within +/- 1 parts per thousand, even though the wollastonite compositions vary by almost 10 parts per thousand. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Excessive exposure to solar Ultra-Violet (UV) light is the main cause of most skin cancers in humans. Factors such as the increase of solar irradiation at ground level (anthropic pollution), the rise in standard of living (vacation in sunny areas), and (mostly) the development of outdoor activities have contributed to increase exposure. Thus, unsurprisingly, incidence of skin cancers has increased over the last decades more than that of any other cancer. Melanoma is the most lethal cutaneous cancer, while cutaneous carcinomas are the most common cancer type worldwide. UV exposure depends on environmental as well as individual factors related to activity. The influence of individual factors on exposure among building workers was investigated in a previous study. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure. A high variance of short-term exposure was observed between different body locations, indicating the occurrence of intense, subacute exposures. It was also found that effective short-term exposure ranged between 0 and 200% of ambient irradiation, suggesting that ambient irradiation is a poor predictor of effective exposure. Various dosimetric techniques enable to assess individual effective exposure, but dosimetric measurements remain tedious and tend to be situation-specific. As a matter of facts, individual factors (exposure time, body posture and orientation in the sun) often limit the extrapolation of exposure results to similar activities conducted in other conditions. Objective: The research presented in this paper aims at developing and validating a predictive tool of effective individual exposure to solar UV. Methods: Existing computer graphic techniques (3D rendering) were adapted to reflect solar exposure conditions and calculate short-term anatomical doses. A numerical model, represented as a 3D triangular mesh, is used to represent the exposed body. The amount of solar energy received by each "triangle is calculated, taking into account irradiation intensity, incidence angle and possible shadowing from other body parts. The model take into account the three components of the solar irradiation (direct, diffuse and albedo) as well as the orientation and posture of the body. Field measurements were carried out using a forensic mannequin at the Payerne MeteoSwiss station. Short-term dosimetric measurements were performed in 7 anatomical locations for 5 body postures. Field results were compared to the model prediction obtained from the numerical model. Results: The best match between prediction and measurements was obtained for upper body parts such as shoulders (Ratio Modelled/Measured; Mean = 1.21, SD = 0.34) and neck (Mean = 0.81, SD = 0.32). Small curved body parts such as forehead (Mean = 6.48, SD = 9.61) exhibited a lower matching. The prediction is less accurate for complex postures such as kneeling (Mean = 4.13, SD = 8.38) compared to standing up (Mean = 0.85, SD = 0.48). The values obtained from the dosimeters and the ones computed from the model are globally consistent. Conclusion: Although further development and validation are required, these results suggest that effective exposure could be predicted for a given activity (work or leisure) in various ambient irradiation conditions. Using a generic modelling approach is of high interest in terms of implementation costs as well as predictive and retrospective capabilities.
Resumo:
Nessie is an Autonomous Underwater Vehicle (AUV) created by a team of students in the Heriot Watt University to compete in the Student Autonomous Underwater Competition, Europe (SAUC-E) in August 2006. The main objective of the project is to find the dynamic equation of the robot, dynamic model. With it, the behaviour of the robot will be easier to understand and movement tests will be available by computer without the need of the robot, what is a way to save time, batteries, money and the robot from water inside itself. The object of the second part in this project is setting a control system for Nessie by using the model
Resumo:
This paper presents and discusses the use of Bayesian procedures - introduced through the use of Bayesian networks in Part I of this series of papers - for 'learning' probabilities from data. The discussion will relate to a set of real data on characteristics of black toners commonly used in printing and copying devices. Particular attention is drawn to the incorporation of the proposed procedures as an integral part in probabilistic inference schemes (notably in the form of Bayesian networks) that are intended to address uncertainties related to particular propositions of interest (e.g., whether or not a sample originates from a particular source). The conceptual tenets of the proposed methodologies are presented along with aspects of their practical implementation using currently available Bayesian network software.
Resumo:
Calculating explicit closed form solutions of Cournot models where firms have private information about their costs is, in general, very cumbersome. Most authors consider therefore linear demands and constant marginal costs. However, within this framework, the nonnegativity constraint on prices (and quantities) has been ignored or not properly dealt with and the correct calculation of all Bayesian Nash equilibria is more complicated than expected. Moreover, multiple symmetric and interior Bayesianf equilibria may exist for an open set of parameters. The reason for this is that linear demand is not really linear, since there is a kink at zero price: the general ''linear'' inverse demand function is P (Q) = max{a - bQ, 0} rather than P (Q) = a - bQ.
Resumo:
Model predictiu basat en xarxes bayesianes que permet identificar els pacients amb major risc d'ingrés a un hospital segons una sèrie d'atributs de dades demogràfiques i clíniques.
Resumo:
Ground-penetrating radar (GPR) has the potential to provide valuable information on hydrological properties of the vadose zone because of their strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR data within a coupled geophysical-hydrological framework may allow for effective estimation of subsurface van-Genuchten-Mualem (VGM) parameters and their corresponding uncertainties. An important and still unresolved issue, however, is how to best integrate GPR data into a stochastic inversion in order to estimate the VGM parameters and their uncertainties, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first introduce a fully Bayesian inversion called Markov-chain-Monte-carlo (MCMC) strategy to perform the stochastic inversion of steady-state GPR data to estimate the VGM parameters and their uncertainties. Within this study, the choice of the prior parameter probability distributions from which potential model configurations are drawn and tested against observed data was also investigated. Analysis of both synthetic and field data collected at the Eggborough (UK) site indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when these data are combined with a realistic, informative prior. A subsequent study explore in detail the dynamic infiltration case, specifically to what extent time-lapse ZOP GPR data, collected during a forced infiltration experiment at the Arrenaes field site (Denmark), can help to quantify VGM parameters and their uncertainties using the MCMC inversion strategy. The findings indicate that the stochastic inversion of time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions. In turn, this significantly improves knowledge of the hydraulic properties, which are required to predict hydraulic behaviour. Finally, another aspect that needed to be addressed involved the comparison of time-lapse GPR data collected under different infiltration conditions (i.e., natural loading and forced infiltration conditions) to estimate the VGM parameters using the MCMC inversion strategy. The results show that for the synthetic example, considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions. When investigating data collected at the Arrenaes field site, further complications arised due to model error and showed the importance of also including a rigorous analysis of the propagation of model error with time and depth when considering time-lapse data. Although the efforts in this thesis were focused on GPR data, the corresponding findings are likely to have general applicability to other types of geophysical data and field environments. Moreover, the obtained results allow to have confidence for future developments in integration of geophysical data with stochastic inversions to improve the characterization of the unsaturated zone but also reveal important issues linked with stochastic inversions, namely model errors, that should definitely be addressed in future research.
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
Individuals sampled in hybrid zones are usually analysed according to their sampling locality, morphology, behaviour or karyotype. But the increasing availability of genetic information more and more favours its use for individual sorting purposes and numerous assignment methods based on the genetic composition of individuals have been developed. The shrews of the Sorex araneus group offer good opportunities to test the genetic assignment on individuals identified by their karyotype. Here we explored the potential and efficiency of a Bayesian assignment method combined or not with a reference dataset to study admixture and individual assignment in the difficult context of two hybrid zones between karyotypic species of the Sorex araneus group. As a whole, we assigned more than 80% of the individuals to their respective karyotypic categories (i.e. 'pure' species or hybrids). This assignment level is comparable to what was obtained for the same species away from hybrid zones. Additionally, we showed that the assignment result for several individuals was strongly affected by the inclusion or not of a reference dataset. This highlights the importance of such comparisons when analysing hybrid zones. Finally, differences between the admixture levels detected in both hybrid zones support the hypothesis of an impact of chromosomal rearrangements on gene flow.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la University of British Columbia, Canadà, entre 2010 i 2012 La malaltia d'Alzheimer (MA) representa avui la forma més comuna de demència en la població envellida. Malgrat fa 100 anys que va ser descoberta, encara avui no existeix cap tractament preventiu i/o curatiu ni cap agent de diagnòstic que permeti valorar quantitativament l'evolució d'aquesta malaltia. L'objectiu en el que s'emmarca aquest treball és contribuir a aportar solucions al problema de la manca d'agents terapèutics i de diagnosi, unívocs i rigorosos, per a la MA. Des del camp de la química bioinorgànica és fàcil fixar-se en l'excessiva concentració d'ions Zn(II) i Cu(II) en els cervells de malalts de MA, plantejar-se la seva utilització com a dianes terapèutica i, en conseqüència, cercar agents quelants que evitin la formació de plaques senils o contribueixin a la seva dissolució. Si bé aquest va ser el punt de partida d’aquest projecte, els múltiples factors implicats en la patogènesi de la MA fan que el clàssic paradigma d’ ¨una molècula, una diana¨ limiti la capacitat de la molècula de combatre aquesta malaltia tan complexa. Per tant, un esforç considerable s’ha dedicat al disseny d’agentsmultifuncionals que combatin els múltiples factors que caracteritzen el desenvolupament de la MA. En el present treball s’han dissenyat agents multifuncionals inspirats en dos esquelets moleculars ben establers i coneguts en el camp de la química medicinal: la tioflavina-T (ThT) i la deferiprona (DFP). La utilització de tècniques in silico que inclouen càlculs farmacocinètics i modelatge molecular ha estat un procés cabdal per a l’avaluació dels millors candidats en base als següents requeriments: (a) compliment de determinades propietats farmacocinètiques que estableixin el seu possible ús com a fàrmac (b) hidrofobicitat adequada per travessar la BBB i (c) interacció amb el pèptid Aen solució.
Resumo:
Aim We investigated the late Quaternary history of two closely related and partly sympatric species of Primula from the south-western European Alps, P. latifolia Lapeyr. and P. marginata Curtis, by combining phylogeographical and palaeodistribution modelling approaches. In particular, we were interested in whether the two approaches were congruent and identified the same glacial refugia. Location South-western European Alps. Methods For the phylogeographical analysis we included 353 individuals from 28 populations of P. marginata and 172 individuals from 15 populations of P. latifolia and used amplified fragment length polymorphisms (AFLPs). For palaeodistribution modelling, species distribution models (SDMs) were based on extant species occurrences and then projected to climate models (CCSM, MIROC) of the Last Glacial Maximum (LGM), approximately 21 ka. Results The locations of the modelled LGM refugia were confirmed by various indices of genetic variation. The refugia of the two species were largely geographically isolated, overlapping only 6% to 11% of the species' total LGM distribution. This overlap decreased when the position of the glacial ice sheet and the differential elevational and edaphic distributions of the two species were considered. Main conclusions The combination of phylogeography and palaeodistribution modelling proved useful in locating putative glacial refugia of two alpine species of Primula. The phylogeographical data allowed us to identify those parts of the modelled LGM refugial area that were likely source areas for recolonization. The use of SDMs predicted LGM refugial areas substantially larger and geographically more divergent than could have been predicted by phylogeographical data alone
Resumo:
Résumé Le cancer du sein est le cancer le plus commun chez les femmes et est responsable de presque 30% de tous les nouveaux cas de cancer en Europe. On estime le nombre de décès liés au cancer du sein en Europe est à plus de 130.000 par an. Ces chiffres expliquent l'impact social considérable de cette maladie. Les objectifs de cette thèse étaient: (1) d'identifier les prédispositions et les mécanismes biologiques responsables de l'établissement des sous-types spécifiques de cancer du sein; (2) les valider dans un modèle ín vivo "humain-dans-souris"; et (3) de développer des traitements spécifiques à chaque sous-type de cancer du sein identifiés. Le premier objectif a été atteint par l'intermédiaire de l'analyse des données d'expression de gènes des tumeurs, produite dans notre laboratoire. Les données obtenues par puces à ADN ont été produites à partir de 49 biopsies des tumeurs du sein provenant des patientes participant dans l'essai clinique EORTC 10994/BIG00-01. Les données étaient très riches en information et m'ont permis de valider des données précédentes des autres études d'expression des gènes dans des tumeurs du sein. De plus, cette analyse m'a permis d'identifier un nouveau sous-type biologique de cancer du sein. Dans la première partie de la thèse, je décris I identification des tumeurs apocrines du sein par l'analyse des puces à ADN et les implications potentielles de cette découverte pour les applications cliniques. Le deuxième objectif a été atteint par l'établissement d'un modèle de cancer du sein humain, basé sur des cellules épithéliales mammaires humaines primaires (HMECs) dérivées de réductions mammaires. J'ai choisi d'adapter un système de culture des cellules en suspension basé sur des mammosphères précédemment décrit et pat décidé d'exprimer des gènes en utilisant des lentivirus. Dans la deuxième partie de ma thèse je décris l'établissement d'un système de culture cellulaire qui permet la transformation quantitative des HMECs. Par la suite, j'ai établi un modèle de xénogreffe dans les souris immunodéficientes NOD/SCID, qui permet de modéliser la maladie humaine chez la souris. Dans la troisième partie de ma thèse je décris et je discute les résultats que j'ai obtenus en établissant un modèle estrogène-dépendant de cancer du sein par transformation quantitative des HMECs avec des gènes définis, identifiés par analyse de données d'expression des gènes dans le cancer du sein. Les cellules transformées dans notre modèle étaient estrogène-dépendantes pour la croissance, diploïdes et génétiquement normales même après la culture cellulaire in vitro prolongée. Les cellules formaient des tumeurs dans notre modèle de xénogreffe et constituaient des métastases péritonéales disséminées et du foie. Afin d'atteindre le troisième objectif de ma thèse, j'ai défini et examiné des stratégies de traitement qui permettent réduire les tumeurs et les métastases. J'ai produit un modèle de cancer du sein génétiquement défini et positif pour le récepteur de l'estrogène qui permet de modéliser le cancer du sein estrogène-dépendant humain chez la souris. Ce modèle permet l'étude des mécanismes impliqués dans la formation des tumeurs et des métastases. Abstract Breast cancer is the most common cancer in women and accounts for nearly 30% of all new cancer cases in Europe. The number of deaths from breast cancer in Europe is estimated to be over 130,000 each year, implying the social impact of the disease. The goals of this thesis were first, to identify biological features and mechanisms --responsible for the establishment of specific breast cancer subtypes, second to validate them in a human-in-mouse in vivo model and third to develop specific treatments for identified breast cancer subtypes. The first objective was achieved via the analysis of tumour gene expression data produced in our lab. The microarray data were generated from 49 breast tumour biopsies that were collected from patients enrolled in the clinical trial EORTC 10994/BIG00-01. The data set was very rich in information and allowed me to validate data of previous breast cancer gene expression studies and to identify biological features of a novel breast cancer subtype. In the first part of the thesis I focus on the identification of molecular apacrine breast tumours by microarray analysis and the potential imptìcation of this finding for the clinics. The second objective was attained by the production of a human breast cancer model system based on primary human mammary epithelial cells {HMECs) derived from reduction mammoplasties. I have chosen to adopt a previously described suspension culture system based on mammospheres and expressed selected target genes using lentiviral expression constructs. In the second part of my thesis I mainly focus on the establishment of a cell culture system allowing for quantitative transformation of HMECs. I then established a xenograft model in immunodeficient NOD/SCID mice, allowing to model human disease in a mouse. In the third part of my thesis I describe and discuss the results that I obtained while establishing an oestrogen-dependent model of breast cancer by quantitative transformation of HMECs with defined genes identified after breast cancer gene expression data analysis. The transformed cells in our model are oestrogen-dependent for growth; remain diploid and genetically normal even after prolonged cell culture in vitro. The cells farm tumours and form disseminated peritoneal and liver metastases in our xenograft model. Along the lines of the third objective of my thesis I defined and tested treatment schemes allowing reducing tumours and metastases. I have generated a genetically defined model of oestrogen receptor alpha positive human breast cancer that allows to model human oestrogen-dependent breast cancer in a mouse and enables the study of mechanisms involved in tumorigenesis and metastasis.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.