991 resultados para Bacterial artificial chromosome (BAC)
Resumo:
Motivation: The number of bacterial genomes being sequenced is increasing very rapidly and hence, it is crucial to have procedures for rapid and reliable annotation of their functional elements such as promoter regions, which control the expression of each gene or each transcription unit of the genome. The present work addresses this requirement and presents a generic method applicable across organisms. Results: Relative stability of the DNA double helical sequences has been used to discriminate promoter regions from non-promoter regions. Based on the difference in stability between neighboring regions, an algorithm has been implemented to predict promoter regions on a large scale over 913 microbial genome sequences. The average free energy values for the promoter regions as well as their downstream regions are found to differ, depending on their GC content. Threshold values to identify promoter regions have been derived using sequences flanking a subset of translation start sites from all microbial genomes and then used to predict promoters over the complete genome sequences. An average recall value of 72% (which indicates the percentage of protein and RNA coding genes with predicted promoter regions assigned to them) and precision of 56% is achieved over the 913 microbial genome dataset.
Resumo:
This paper deals with the application of artificial commutation for a normally rated inverter connecting a weak AC system in a multiterminal HVDC (MTDC) system. Artificial commutation is achieved using series capacitors. A modular digital simulation technique is developed to study the dynamic performance of the system. It is shown that by a proper selection of the value of the capacitor it is possible to limit the valve stresses and the DC harmonics to acceptable levels and achieve an improved performance during severe transient conditions. The determination of the value of the series capacitor is based on a parametric study.
Resumo:
Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.
Resumo:
Three features of avian sex chromosomes - female heterogamety (ZZ male, ZW female), the apparently inactive state of the W chromosome, and dose-dependent expression of Z-linked genes - are examined in regard to their possible relation to sex determination. It is proposed that the W chromosome is facultatively heterochromatic and that the Z and W chromosomes carry one or more homologous sex-determination genes. The absence of dosage compensation in ZZ embryos, and W inactivation in ZW embryos, would then bring about a 2n(ZZ)-n(ZW) inequality in the effective copy number of such genes. The absence of dosage compensation of Z-linked genes in ZZ embryos is viewed as a means by which two copies of Z-W homologous sex determination genes are kept active to meet the requirements of testis determination. W inactivation may promote ovarian development by reducing the effective copy number of these genes from 2n to n. If there is a W-specific gene for femaleness, spread of heterochromatization to this gene in cells forming the right gonadal primordium may explain the latter's normally undifferentiated state; reversal of heterochromatization may similarly explain the development of the right gonad into a testis following left ovariectomy.
Resumo:
We studied the effect on female viability of trans-heterozygous combinations of X-chromosome deficiencies and Sxt-(fl), a null allele of Sex-lethal. Twentyfive deficiencies, which together covered 80% of the X chromosome, were tested. Seven of these trans-heterozygous combinations caused significant levels of female lethality. Two of the seven interacting deficiencies include the previously known sex determination genes sans fille and sisterless-a. Four of the remaining uncover X-chromosomal regions that were not hitherto known to contain sex determination genes. These newly identified regions are defined by deficiencies Df(1)RA2 (7D10; 8A4-5), Df(1)KA14 (7F1-2; 8C6), Df(1)C52 (8E; 9C-D) and Df(1)N19 (17A1; 18A2). These four deficiencies were characterized further to determine whether it was the maternal or zygotic dosage that was primarily responsible for the observed lethality of female embryos, daughterless and extra macrochaetae, two known regulators of Sxl, influence the interaction of these deficiencies with Sxl.
Resumo:
Nitrogen-fixing bacterial isolate from the intercellular spaces of tomato root cortical cells was studied for the location of nif genes on the chromosomal or plasmid DNA. The bacterial isolate showed two plasmids of approximate molecular sizes of 220 and 120 kb. Klebsiella pneumoniae nif HDK probe hybridized with the chromosomal DNA and not with the plasmid DNA thereby showing that nif genes are localised on the chromosomal DNA.
Resumo:
The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.
Resumo:
The role of growth conditions and adhesion of Thiobacillus ferrooxidans on the leaching of chalcopyrite was investigated. Thiobacillus ferrooxidans grown on sulfur, thiosulfate and ferrous ion substrates was used in this comparative study. Growth on sulfur, a solid substrate, requires bacterial adhesion unlike that required in the presence of soluble thiosulfate and ferrous ion in a mineral-salts medium. Solid substrate-grown cells showed higher rates of leaching than those grown in liquid media. An initial lag period noticed during leaching by solution-grown cells was absent when solid substrate-grown cells were used. Such a behavior is attributed to the presence of an inducible proteinaceous cell-surface appendage on the sulfur-grown cells. This appendage aids in bacterial adhesion onto the mineral surfaces. Such an appendage is absent in solution-grown cells, as substantiated by electrophoretic measurements. The importance of bacterial adhesion and the direct mechanism in leaching by Thiobacillus ferrooxidans are demonstrated.
Resumo:
Damage detection by measuring and analyzing vibration signals in a machine component is an established procedure in mechanical and aerospace engineering. This paper presents vibration signature analysis of steel bridge structures in a nonconventional way using artificial neural networks (ANN). Multilayer perceptrons have been adopted using the back-propagation algorithm for network training. The training patterns in terms of vibration signature are generated analytically for a moving load traveling on a trussed bridge structure at a constant speed to simulate the inspection vehicle. Using the finite-element technique, the moving forces are converted into stationary time-dependent force functions in order to generate vibration signals in the structure and the same is used to train the network. The performance of the trained networks is examined for their capability to detect damage from unknown signatures taken independently at one, three, and five nodes. It has been observed that the prediction using the trained network with single-node signature measurement at a suitability chosen location is even better than that of three-node and five-node measurement data.
Resumo:
With increased number of new services and users being added to the communication network, management of such networks becomes crucial to provide assured quality of service. Finding skilled managers is often a problem. To alleviate this problem and also to provide assistance to the available network managers, network management has to be automated. Many attempts have been made in this direction and it is a promising area of interest to researchers in both academia and industry. In this paper, a review of the management complexities in present day networks and artificial intelligence approaches to network management are presented. Published by Elsevier Science B.V.
Resumo:
Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.
Resumo:
The presence of residual chlorine and organic matter govern the bacterial regrowth within a water distribution system. The bacterial growth model is essential to predict the spatial and temporal variation of all these substances throughout the system. The parameters governing the bacterial growth and biodegradable dissolved organic carbon (BDOC) utilization are difficult to determine by experimentation. In the present study, the estimation of these parameters is addressed by using simulation-optimization procedure. The optimal solution by genetic algorithm (GA) has indicated that the proper combination of parameter values are significant rather than correct individual values. The applicability of the model is illustrated using synthetic data generated by introducing noise in to the error-free measurements. The GA was found to be a potential tool in estimating the parameters controlling the bacterial growth and BDOC utilization. Further, the GA was also used for evaluating the sensitivity issues relating parameter values and objective function. It was observed that mu and k(cl) are more significant and dominating compared to the other parameters. But the magnitude of the parameters is also an important issue in deciding the dominance of a particular parameter. GA is found to be a useful tool in autocalibration of bacterial growth model and a sensitivity study of parameters.
Resumo:
By employing a procedure that combines ELISA and photoacoustic spectroscopy, we have examined the content of 5-methylcytosine (m(5)C) in DNA of individuals who differed from one another in the number of X chromosomes in their genomes. The results show that the human inactive X chromosome (Xi) contains very high amounts of this modified nucleotide. We estimate that in the 46,XX female there is more m(5)C in Xi (similar to3.6 x 10(7)) than in all the remaining chromosomes put together (similar to2.1 x 10(7)). Our results also suggest that nearly one-fifth of all cytosines in Xi are methylated and that, in addition to CpG methylation, there is extensive non-CpG methylation as well.