950 resultados para Bacteria, Anaerobic.
Resumo:
A collection of marine bacteria isolated from a temperate coastal zone has been screened in a programme of biodiscovery. A total of 34 enzymes with biotechnological potential were screened in 374 isolates of marine bacteria. Only two enzymes were found in all isolates while the majority of enzyme activities were present in a smaller proportion of the isolates. A cluster analysis demonstrated no significant correlation between taxonomy and enzyme function. However, there was evidence of co-occurrence of some enzyme activity in the same isolate. In this study marine Proteobacteria had a higher complement of enzymes with biodiscovery potential than Actinobacteria; this contrasts with the terrestrial environment where the Actinobacteria phylum is a proven source of enzymes with important industrial applications. In addition, a number of novel enzyme functions were more abundant in this marine culture collection than would be expected on the basis of knowledge from terrestrial bacteria. There is a strong case for future investigation of marine bacteria as a source for biodiscovery.
Resumo:
Ulva zoospores preferentially settle on N-acylhomoserine lactone (AHL) producing marine bacterial biofilms. To investigate whether AHL signal molecules also affect the success and rate of zoospore germination in addition to zoospore attraction, the epiphytic bacteria associated with mature Ulva linza were characterized and bacterial isolates representative of this community tested for the ability to produce AHLs. Two of these AHL-producing isolates, Sulfitobacter spp. 376 and Shewanella spp. 79, were transformed with plasmids expressing the Bacillus spp. AHL lactonase gene aiiA to generate AHL-deficient variants. The germination and growth of U. linza zoospores was studied in the presence of these AHL-deficient strains and their AHL-producing counterparts. This revealed that the AHLs produced by Sulfitobacter spp. and Shewanella spp. or the bacterial products they regulate have a negative impact on both zoospore germination and the early growth of the Ulva germling. Further experiments with Escherichia coli biofilms expressing recombinant AHL synthases and synthetic AHLs provide data to demonstrate that zoospores germinated and grown in the absence of AHLs were significantly longer than those germinated in the presence of AHLs. These results reveal an additional role for AHLs per se in the interactive relationships between marine bacteria and Ulva zoospores.
Resumo:
Ulva zoospores preferentially settle on N-acylhomoserine lactone (AHL) producing marine bacterial biofilms. To investigate whether AHL signal molecules also affect the success and rate of zoospore germination in addition to zoospore attraction, the epiphytic bacteria associated with mature Ulva linza were characterized and bacterial isolates representative of this community tested for the ability to produce AHLs. Two of these AHL-producing isolates, Sulfitobacter spp. 376 and Shewanella spp. 79, were transformed with plasmids expressing the Bacillus spp. AHL lactonase gene aiiA to generate AHL-deficient variants. The germination and growth of U. linza zoospores was studied in the presence of these AHL-deficient strains and their AHL-producing counterparts. This revealed that the AHLs produced by Sulfitobacter spp. and Shewanella spp. or the bacterial products they regulate have a negative impact on both zoospore germination and the early growth of the Ulva germling. Further experiments with Escherichia coli biofilms expressing recombinant AHL synthases and synthetic AHLs provide data to demonstrate that zoospores germinated and grown in the absence of AHLs were significantly longer than those germinated in the presence of AHLs. These results reveal an additional role for AHLs per se in the interactive relationships between marine bacteria and Ulva zoospores.
Resumo:
short doi:10/rf8 full doi:10.5285/f014becf-d6d6-3bb9-e044-000b5de50f38
Resumo:
The effect of pressure on upper ocean free-living bacteria and bacteria attached to rapidly sinking particles was investigated through studying their ability to synthesize DNA and protein by measuring their rate of 3H-thymidine and 3H-leucine incorporation. Studies were carried out on samples from the NE Atlantic under the range of pressures (1–430 atm) encountered by sinking aggregates during their journey to the deep-sea bed. Thymidine and leucine incorporation rates per bacterium attached to sinking particles from 200 m were about six and ten times higher, respectively, than the free-living bacterial assemblage. The ratio of leucine incorporation rate per cell to thymidine incorporation rate per cell was significantly different between the larger attached (18.9:1) and smaller free-living (10.4:1) assemblages. The rates of leucine and thymidine incorporation decreased exponentially with increasing pressure for the free-living and linearly for attached bacteria, while there was no significant influence of pressure on cell numbers. At 100 atm leucine and thymidine incorporation rate per free-living bacterium was reduced to 73 and 20%, respectively, relative to that measured at 1 atm. Pressure of 100 atm reduced leucine and thymidine incorporation per attached bacterium to 94 and 70%, and at 200 atm these rates were reduced to 34 and 51%, respectively, relative to those measured at 1 atm. There was no significant uncoupling of thymidine and leucine incorporation for either the free-living or attached bacterial assemblages with increasing pressure, indicating that the processess of DNA and protein synthesis may be equally affected by increasing pressure. It is therefore unlikely that bacteria, originating from surface waters, attached to rapidly sinking particles play a role in particle remineralization below approximately 1000–2000 m. These results may help to explain the occurrence of relatively fresh aggregates on the deep-sea bed that still contain sufficient organic carbon to fuel the rapid growth of benthic micro-organisms; they also indicate that the effect of pressure on microbial processes may be important in oceanic biogeochemical cycles.
Resumo:
The abundance of ammonia-oxidising bacterial (AOB) and ammonia-oxidising archaeal (AOA) (amoA) genes and ammonia oxidation rates were compared bimonthly from July 2008 to May 2011 in 4 contrasting coastal sediments in the western English Channel. Despite a higher abundance of AOA amoA genes within all sediments and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Sediment type was a major factor in determining both AOB amoA gene abundance and AOB community structure, possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation. Decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. PCR-DGGE of AOB amoA genes indicated that no seasonal changes to community composition occurred; however, a gradual movement in community composition occurred at 3 of the sites studied. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rates, or any other environmental variable measured, may be related to the higher spatial variation amongst measurements, obscuring temporal trends, or the bimonthly sampling, which may have been too infrequent to capture temporal variability in the deposition of fresh organic matter. Alternatively, AOA may respond to changing substrate concentrations by an increase or decrease in transcript rather than gene abundance.