999 resultados para BRAIN REPAIR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental evidence indicates a role of the N-methyl-D-aspartate receptor in the pathogenesis of brain injury occurring during cardiac surgery with cardiopulmonary bypass (CPB). Dextromethorphan is a noncompetitive antagonist of this receptor with a favorable safety profile. Thirteen children age 3-36 months undergoing cardiac surgery with expected CPB of 60 minutes or more were randomly assigned to treatment with dextromethorphan (36-38 mg/kg/day) or placebo administered by naso-gastric tube. Dextromethorphan was absorbed well and reached putative therapeutic levels in blood and cerebrospinal fluid. Adverse effects were not observed. Mild hemiparesis developed after operation in one child of each group, and severe encephalopathy in one of the placebo group. Sharp waves were recorded in postoperative continuous electroencephalography in all placebo (n = 7) but only in 2/6 dextromethorphan treated children (p = 0.02). Pre- and postoperative cranial magnetic resonance imaging (MRI) revealed less pronounced ventricular enlargement in the dextromethorphan group (not significant). An increase of periventricular white matter lesions was visible in two placebo-treated children only. No elevations of cerebrospinal fluid enzymes were observed in either group. Although children with dextromethorphan showed less abnormalities in electroencephalography and MRI, dissimilarities of the treatment groups by chance diminished conclusions to possible protective effects of dextromethorphan at this time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE:: To examine the accuracy of brain multimodal monitoring-consisting of intracranial pressure, brain tissue PO2, and cerebral microdialysis-in detecting cerebral hypoperfusion in patients with severe traumatic brain injury. DESIGN:: Prospective single-center study. PATIENTS:: Patients with severe traumatic brain injury. SETTING:: Medico-surgical ICU, university hospital. INTERVENTION:: Intracranial pressure, brain tissue PO2, and cerebral microdialysis monitoring (right frontal lobe, apparently normal tissue) combined with cerebral blood flow measurements using perfusion CT. MEASUREMENTS AND MAIN RESULTS:: Cerebral blood flow was measured using perfusion CT in tissue area around intracranial monitoring (regional cerebral blood flow) and in bilateral supra-ventricular brain areas (global cerebral blood flow) and was matched to cerebral physiologic variables. The accuracy of intracranial monitoring to predict cerebral hypoperfusion (defined as an oligemic regional cerebral blood flow < 35 mL/100 g/min) was examined using area under the receiver-operating characteristic curves. Thirty perfusion CT scans (median, 27 hr [interquartile range, 20-45] after traumatic brain injury) were performed on 27 patients (age, 39 yr [24-54 yr]; Glasgow Coma Scale, 7 [6-8]; 24/27 [89%] with diffuse injury). Regional cerebral blood flow correlated significantly with global cerebral blood flow (Pearson r = 0.70, p < 0.01). Compared with normal regional cerebral blood flow (n = 16), low regional cerebral blood flow (n = 14) measurements had a higher proportion of samples with intracranial pressure more than 20 mm Hg (13% vs 30%), brain tissue PO2 less than 20 mm Hg (9% vs 20%), cerebral microdialysis glucose less than 1 mmol/L (22% vs 57%), and lactate/pyruvate ratio more than 40 (4% vs 14%; all p < 0.05). Compared with intracranial pressure monitoring alone (area under the receiver-operating characteristic curve, 0.74 [95% CI, 0.61-0.87]), monitoring intracranial pressure + brain tissue PO2 (area under the receiver-operating characteristic curve, 0.84 [0.74-0.93]) or intracranial pressure + brain tissue PO2+ cerebral microdialysis (area under the receiver-operating characteristic curve, 0.88 [0.79-0.96]) was significantly more accurate in predicting low regional cerebral blood flow (both p < 0.05). CONCLUSION:: Brain multimodal monitoring-including intracranial pressure, brain tissue PO2, and cerebral microdialysis-is more accurate than intracranial pressure monitoring alone in detecting cerebral hypoperfusion at the bedside in patients with severe traumatic brain injury and predominantly diffuse injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent developments in high magnetic field 13C magnetic resonance spectroscopy with improved localization and shimming techniques have led to important gains in sensitivity and spectral resolution of 13C in vivo spectra in the rodent brain, enabling the separation of several 13C isotopomers of glutamate and glutamine. In this context, the assumptions used in spectral quantification might have a significant impact on the determination of the 13C concentrations and the related metabolic fluxes. In this study, the time domain spectral quantification algorithm AMARES (advanced method for accurate, robust and efficient spectral fitting) was applied to 13 C magnetic resonance spectroscopy spectra acquired in the rat brain at 9.4 T, following infusion of [1,6-(13)C2 ] glucose. Using both Monte Carlo simulations and in vivo data, the goal of this work was: (1) to validate the quantification of in vivo 13C isotopomers using AMARES; (2) to assess the impact of the prior knowledge on the quantification of in vivo 13C isotopomers using AMARES; (3) to compare AMARES and LCModel (linear combination of model spectra) for the quantification of in vivo 13C spectra. AMARES led to accurate and reliable 13C spectral quantification similar to those obtained using LCModel, when the frequency shifts, J-coupling constants and phase patterns of the different 13C isotopomers were included as prior knowledge in the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several recent studies have further clarified the role of chemotherapy in newly diagnosed anaplastic glioma. For newly diagnosed glioblastoma, combined daily radiotherapy with daily temozolomide followed by six cycles of adjuvant temozolomide improves overall survival. This benefit is especially observed in patients with a methylated promotor of the MGMT gene which encodes an alkyltransferase; this observation however, needs confirmation. Although oligodendroglial tumours are sensitive to chemotherapy, classical adjuvant nitrosourea-based chemotherapy does not improve overall survival in newly diagnosed anaplastic oligodendroglioma, even in the subset of 1p/19q loss tumours. It may increase progression-free survival however, and further studies must show if combined modality treatment with daily chemotherapy during radiotherapy increases survival. Trials exploring the role of chemotherapy in low-grade glioma are ongoing. No standard chemotherapy is currently available for highly anaplastic glioma failing first-line temozolomide-based therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: : Intravascular ultrasound (IVUS) generates high definition circumferential cross-sectional images and provides real-time readout of vascular dimensions, including visualization of vessel branches. We have used it as an alternative to angiography in the endovascular thoracic aneurysm repair work-up. METHODS: : Out of consecutive 203 patients with descending thoracic aortic aneurysm, 89 (43.8%) received endovascular treatment [mean age, 68 ± 8 years; range, 29-82; male, 79 (88.7%); female, 10 (11.3%)] without using angiography during the endovascular procedure. IVUS (6 F, 12.5 MHz probe or 10 F 9 MHz) coupled with fluoroscopy for the placement of radiopaque markers was used for target site identification, landing zone measurement, device positioning, and assessment of endovascular repair. RESULTS: : Hospital mortality was 4/89 (4.5%). Number of devices implanted in each patient was 1.2 (range, 1-3). X-ray exposure time was 12 ± 8 minutes. Median procedure time was 63 ± 20 minutes. Conversion to open surgery was necessary in one patient (1.1%) because of aortic dissection. In nine patients (10.1%) left subclavian artery was covered because of a short neck. Two patients (2.2%) had vascular access lesions and required surgical repair. One patient developed paraplegia (1.1%). Early endoleak was observed in eight patients (8.9%) and 4 (4.5%) required additional procedures (proximal or distal extensions). Late conversion was necessary in one patient (1.1%). CONCLUSIONS: : IVUS provides all information necessary for device selection, target site identification as well as safe and correct deployment of thoracic endoprostheses and makes periprocedural angiography unnecessary, thus avoiding the risk of renal failure because of contrast medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: We previously reported that myeloid cells can induce mucosal healing in a mouse model of acute colitis. Promotion of mucosal repair is becoming a major goal in the treatment of Crohn's disease. Our aim in this study is to investigate the pro-repair function of myeloid cells in healthy donor (HD) and Crohn's disease patients (CD). METHODS: Peripheral blood mononuclear cells (PBMC) from HD and CD patients were isolated from blood samples by Ficoll density gradient. Monocytic CD14+ cells were positively selected by Macs procedure and then differentiated ex-vivo into macrophages (Mφ). The repair function of PBMC, CD14+ monocytic cells and macrophages were evaluated in an in vitro wound healing assay. RESULTS: PBMC and CD14+ myeloid cells from HD and CD were not able to repair at any tested cell concentration. Remarkably, HD Mφ were able to induce wound healing only at high concentration (105 added Mφ), but, if activated with heat killed bacteria, they were able to repair even at very low concentration. On the contrary, not activated CD Mφ were not able to promote healing at any rate, but this function was restored upon activation. CONCLUSION: We showed that CD Mφ in their steady state, unlike HD Mφ, are defective in promoting wound healing. Our results are in keeping with the current theory of CD as an innate immunodeficiency. Defective Mφ may be responsible to the mucosal repair defects in CD patients and to the subsequent chronic activation of the adaptive immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite clinical experience that suggests a high burden of care among relatives of individuals with a primary malignant brain tumor (PMBT), little is known about their actual needs. In this study, the caregivers' personal experiences, quality of life, burden of care, and psychological well-being were examined. Fifty-nine percent did not receive any financial aid for home care, 33% had increased risk for psychosomatic problems, 45% had anxiety, and 33% increased depression levels. The caregiver's quality of life was most strongly affected by the burden of care (p < .001) and the patient's mental state (p < .03). To improve the situation, empathetic professionals and an early implementation of palliative care and social work are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states. FROM THE CLINICAL EDITOR: By correlating electron microscopy and ultra-high resolution ion microprobe imaging of tissue from fasting mice injected with (13)C-labeled glucose, the authors demonstrate a method to image glycogen metabolism at the nanometer scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.