995 resultados para BONE HEALING


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The first objective of this pilot study was to evaluate the impact of the hydrophilicity on the early phases of osseointegration. The second objective was to compare two hydrophilic implant surfaces with different geometries, surface roughness, and technologies achieving hydrophilicity. MATERIAL AND METHODS Twelve weeks after extraction, all four quadrants of nine minipigs received three dental implants, alternating between hydrophilic microrough surfaces (INICELL and SLActive) and a conventional hydrophobic microrough surface. After 5, 10, and 15 days of submerged healing, ground sections were prepared and subjected to histologic and histomorphometric analysis. RESULTS The histologic analysis revealed a similar healing pattern among the hydrophilic and hydrophobic implant surfaces, with extensive bone formation occurring between day 5 and day 10. With BIC values of greater than 50% after 10 days, all examined surfaces indicated favorable osseointegration at this very early point in healing. At day 15, the mean new bone-to-implant contact (newBIC) of one hydrophilic surface (INICELL; 55.8 ± 14.4%) was slightly greater than that of the hydrophobic microrough surface (40.6 ± 20.2%). At day 10 and day 15, an overall of 21% of the implants had to be excluded from analysis due to inflammations primarily caused by surgical complications. CONCLUSION Substantial bone apposition occurs between day 5 and day 10. The data suggest that the hydrophilic surface can provoke a slight tendency toward increased bone apposition in minipigs after 15 days. A direct comparison of two hydrophilic surfaces with varying geometries is of limited relevance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontitis is a chronic inflammatory disease of the periodontium, which is caused by pathogenic bacteria in combination with other risk factors. The bacteria induce an immunoinflammatory host response, which can lead to irreversible matrix degradation and bone resorption. Periodontitis can be successfully treated. To achieve regenerative periodontal healing, bioactive molecules, such as enamel matrix derivative (EMD), are applied during periodontal surgery. Recently, it has been shown that obesity is associated with periodontitis and compromised healing after periodontal therapy. The mechanisms underlying these associations are not well understood so far, but adipokines may be a pathomechanistic link. Adipokines are bioactive molecules that are secreted by the adipose tissue, and that regulate insulin sensitivity and energy expenditure, but also inflammatory and healing processes. It has also been demonstrated that visfatin and leptin increase the synthesis of proinflammatory and proteolytic molecules, whereas adiponectin downregulates the production of such mediators in periodontal cells. In addition, visfatin and leptin counteract the beneficial effects of EMD, whereas adiponectin enhances the actions of EMD on periodontal cells. Since visfatin and leptin levels are increased and adiponectin levels are reduced in obesity, these adipokines could be a pathomechanistic link whereby obesity and obesity-related diseases enhance the risk for periodontitis and compromised periodontal healing. Recent studies have also revealed that adipokines, such as visfatin, leptin and adiponectin, are produced in periodontal cells and regulated by periodontopathogenic bacteria. Therefore, adipokines may also represent a mechanism whereby periodontal infections can impact on systemic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Despite the worldwide increased prevalence of osteoporosis, no data are available evaluating the effect of an enamel matrix derivative (EMD) on the healing of periodontal defects in patients with osteoporosis. This study aims to evaluate whether the regenerative potential of EMD may be suitable for osteoporosis-related periodontal defects. METHODS Forty female Wistar rats (mean body weight: 200 g) were used for this study. An osteoporosis animal model was carried out by bilateral ovariectomy (OVX) in 20 animals. Ten weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar. Animals were randomly assigned to four groups of 10 animals per group: 1) control animals with unfilled periodontal defects; 2) control animals with EMD-treated defects; 3) OVX animals with unfilled defects; and 4) OVX animals with EMD-treated defects. The animals were euthanized 28 days later, and the percentage of defect fill and thickness of newly formed bone and cementum were assessed by histomorphometry and microcomputed tomography (micro-CT) analysis. The number of osteoclasts was determined by tartrate-resistant acid phosphatase (TRAP), and angiogenesis was assessed by analyzing formation of blood vessels. RESULTS OVX animals demonstrated significantly reduced bone volume in unfilled defects compared with control defects (18.9% for OVX animals versus 27.2% for control animals) as assessed by micro-CT. The addition of EMD in both OVX and control animals resulted in significantly higher bone density (52.4% and 69.2%, respectively) and bone width (134 versus 165μm) compared with untreated defects; however, the healing in OVX animals treated with EMD was significantly lower than that in control animals treated with EMD. Animals treated with EMD also demonstrated significantly higher cementum formation in both control and OVX animals. The number of TRAP-positive osteoclasts did not vary between untreated and EMD-treated animals; however, a significant increase was observed in all OVX animals. The number of blood vessels and percentage of new vessel formation was significantly higher in EMD-treated samples. CONCLUSIONS The results from the present study suggest that: 1) an osteoporotic phenotype may decrease periodontal regeneration; and 2) EMD may support greater periodontal regeneration in patients suffering from the disease. Additional clinical studies are necessary to fully elucidate the possible beneficial effect of EMD for periodontal regeneration in patients suffering from osteoporosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present review was to summarize the evidence available on the temporal sequence of hard and soft tissue healing around titanium dental implants in animal models and in humans. A search was undertaken to find animal and human studies reporting on the temporal dynamics of hard and soft tissue integration of titanium dental implants. Moreover, the influence of implant surface roughness and chemistry on the molecular mechanisms associated with osseointegration was also investigated. The findings indicated that the integration of titanium dental implants into hard and soft tissue represents the result of a complex cascade of biological events initiated by the surgical intervention. Implant placement into alveolar bone induces a cascade of healing events starting with clot formation and continuing with the maturation of bone in contact with the implant surface. From a genetic point of view, osseointegration is associated with a decrease in inflammation and an increase in osteogenesis-, angiogenesis- and neurogenesis-associated gene expression during the early stages of wound healing. The attachment and maturation of the soft tissue complex (i.e. epithelium and connective tissue) to implants becomes established 6-8 weeks following surgery. Based on the findings of the present review it can be concluded that improved understanding of the mechanisms associated with osseointegration will provide leads and targets for strategies aimed at enhancing the clinical performance of titanium dental implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the role of the periosteum in preserving the buccal bone after ridge splitting and expansion with simultaneous implant placement. MATERIAL AND METHODS In 12 miniature pigs, the mandibular premolars and first molars were removed together with the interdental bone septa and the buccal bone. Three months later, ridge splitting and expansion of the buccal plate was performed with simultaneous placement of two titanium implants per quadrant. Access by a mucosal flap (MF) was prepared on test sides, while a mucoperiosteal flap (MPF) with complete denudation of the buccal bone was increased on control sides. After healing periods of six and 12 weeks, the animals were sacrificed for histologic and histometric evaluation. RESULTS In the MF group, all 16 implants were osseointegrated, while in the MPF group, four of 16 implants were lost. Noticeable differences of bone levels on the implant surface and of the bone crest (BC) were found between the MF and the MPF group. Buccally after 6 weeks, the median distance between the implant shoulder (IS) and the coronal-most bone on the implant (cBIC) was for the MF group -1.42 ± 0.42 mm and for the MPF group -4.80 ± 2.72 mm (P = 0.15). The median distance between the IS and the buccal BC was -1.24 ± 0.51 mm and -2.78 ± 1.98 mm (P = 0.12) for the MF and MPF group, respectively. After 12 weeks, median IS-cBIC was -2.12 ± 0.84 mm for MF and -7.19 mm for MPF, while IS-BC was -2.08 ± 0.79 mm for MF and -5.96 mm for MPF. After 6 weeks, the median buccal bone thickness for MF and MPF was 0.01 and 0 mm (P < 0.001) at IS, 1.48 ± 0.97 mm and 0 ± 0.77 mm (P = 0.07) at 2 mm apical to IS, and 2.12 ± 1.19 mm and 1.72 ± 01.50 mm (P = 0.86) at 4 mm apical to IS, respectively. After 12 weeks, buccal bone thickness in the MF group was 0 mm at IS, 0.21 mm at 2 mm apical to IS, and 2.56 mm at 4 mm apical to IS, whereas complete loss of buccal bone was measured from IS to 4 mm apical to IS for the MPF group. CONCLUSIONS In this ridge expansion model in miniature pigs, buccal bone volume was significantly better preserved when the periosteum remained attached to the bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES The occurrence of multinucleated giant cells (MNGCs) on bone substitute materials has been recognized for a long time. However, there have been no studies linking material characteristics with morphology of the MNGCs. The aim was to analyze the qualitative differences of MNGCs on two commercially available calcium phosphate bone substitute materials retrieved from bone defects. MATERIAL AND METHODS Six defects were prepared bilaterally in the mandibular body of three mini pigs. The defects were randomly grafted with either deproteinized bovine bone mineral (DBBM) or biphasic calcium phosphate (BCP). After a healing period of four weeks, bone blocks were embedded in LR White resin. Three consecutive sections per defect were analyzed as follows: two with light microscopy using toluidine blue and tartrate-resistant acid phosphatase (TRAP) staining and one with transmission electron microscopy. RESULTS Multinucleated giant cells appeared on both biomaterials. On BCP, MNGCs had a flat morphology and were not observed in resorption lacunae. On DBBM, the MNGCs appeared more round and were often found in shallow concavities. MNGCs on both biomaterials demonstrated a varying degree of TRAP staining, with a tendency toward higher staining intensity of MNGCs on BCP. At the ultrastructural level, signs of superficial dissolution of BCP together with phagocytosis of minor fragments were observed. MNGCs on the surface of DBBM demonstrated sealing zones and ruffled borders, both features of mature osteoclasts. CONCLUSION MNGCs demonstrated distinctly different histological features depending on the bone substitute material used. Further research is warranted to understand the clinical implications of these morphological observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Vitamin D deficiency is considered to diminish bone regeneration. Yet, raising the serum levels takes months. A topic application of the active vitamin D metabolite, calcitriol, may be an effective approach. Thus, it becomes important to know the effect of vitamin D deficiency and local application on alveolar bone regeneration. MATERIAL AND METHODS Sixty rats were divided into three groups; two vitamin depletion groups and a control group. Identical single defects (2 mm diameter) were created in the maxilla and mandible treated with calcitriol soaked collagen in one deficiency group while in the other two groups not. Histomorphometric analysis and micro CTs were performed after 1 and 3 weeks. Serum levels of 25(OH)D3 and PTH were determined. RESULTS Bone formation rate significantly increased within the observation period in all groups. Bone regeneration was higher in the maxilla than in the mandible. However, bone regeneration was lower in the control group compared to vitamin depletion groups, with no significant effects by local administration of calcitriol (micro CT mandible p = 0.003, maxilla p < 0.001; histomorphometry maxilla p = 0.035, mandible p = 0.18). CONCLUSION Vitamin D deficiency not necessarily impairs bone regeneration in the rat jaw and a single local calcitriol application does not enhance healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Pharmacological inhibitors of prolyl hydroxylases, also termed hypoxia-mimetic agents (HMAs), when repeatedly injected can support angiogenesis and bone regeneration. However, the possible role of HMA loaded onto bone substitutes to support angiogenesis and bone regeneration under diabetic condition is unknown. The capacity of HMA loaded onto deproteinized bovine bone mineral (DBBM) to support angiogenesis and bone formation was examined in diabetic Wistar rats. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin. The HMA dimethyloxalylglycine (DMOG) and desferrioxamine (DFO) were lyophilized onto DBBM. Calvarial defects were created with a trephine drill and filled with the respective bone substitutes. After 4 weeks of healing, the animals were subjected to histological and histomorphometric analysis. RESULTS In this report, we provide evidence that DMOG loaded onto DBBM can support angiogenesis in vivo. Specifically, we show that DMOG increased the vessel area in the defect site to 2.4% ± 1.3% compared with controls 1.1% ± 0.48% (P = 0.012). There was a trend toward an increased vessel number in the defect site with 38.6 ± 17.4 and 31.0 ± 10.3 in the DMOG and the control group (P = 0.231). The increase in angiogenesis, however, did not translate into enhanced bone formation in the defect area with 9.2% ± 7.1% and 8.4% ± 5.6% in DMOG and control group, respectively. No significant changes were caused by DFO. CONCLUSIONS The results suggest that DMOG loaded onto DBBM can support angiogenesis, but bone formation does not increase accordingly in a type 1 diabetic rat calvarial defect model at the indicated time point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultimate goals of periodontal therapy remain the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and the re-establishment of a sustainable health-promoting biofilm from one characterized by dysbiosis. This volume of Periodontology 2000 discusses the multiple facets of a transition from therapeutic empiricism during the late 1960s, toward regenerative therapies, which is founded on a clearer understanding of the biophysiology of normal structure and function. This introductory article provides an overview on the requirements of appropriate in vitro laboratory models (e.g. cell culture), of preclinical (i.e. animal) models and of human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration but also suffer from a unidimensional and simplistic approach that does not account for the complexities of the in vivo situation, in which multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research, employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches but the outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal-regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The aim of this investigation was to evaluate the performance of Straumann Bone Level SLActive implants in various clinical situations in daily dental practice for up to 3 years. METHOD AND MATERIALS This was a prospective, multicenter, non-interventional study in which implants were placed within approved indications in any situation deemed suitable by the treating clinician. No implant placement or loading protocol was specified, and implants were placed according to the routine treatment protocols at each participating center. RESULTS In this analysis, data were available from 342 implants in 233 patients in three countries (USA, Canada, and Switzerland). One or two implants were placed in the majority of patients (70.8% and 19.3%, respectively), mostly in the maxilla (71.3%); almost half (47.7%) were placed in the esthetic zone. Implant placement after 4 to > 16 weeks of healing was preferred in Switzerland (92.0%), while 42.0% of implants were placed immediately in the USA and Canada. A flapless procedure was performed in 25.2% of cases in the USA and Canada, compared to 0.5% in Switzerland. Cumulative implant survival and success rates after 3 years were 97.5% and 93.5%, respectively. CONCLUSION Straumann Bone Level Implants can achieve favorable outcomes and high survival rates after 3 years in daily dental practice. The survival and success rates were comparable with those achieved in formal controlled clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteal macrophages (OsteoMacs) are a special subtype of macrophage residing in bony tissues. Interesting findings from basic research have pointed to their vast and substantial roles in bone biology by demonstrating their key function in bone formation and remodeling. Despite these essential findings, much less information is available concerning their response to a variety of biomaterials used for bone regeneration with the majority of investigation primarily focused on their role during the foreign body reaction. With respect to biomaterials, it is well known that cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials. Here they demonstrate extremely plastic phenotypes with the ability to differentiate towards classical M1 or M2 macrophages, or subsequently fuse into osteoclasts or multinucleated giant cells (MNGCs). These MNGCs have previously been characterized as foreign body giant cells and associated with biomaterial rejection, however more recently their phenotypes have been implicated with wound healing and tissue regeneration by studies demonstrating their expression of key M2 markers around biomaterials. With such contrasting hypotheses, it becomes essential to better understand their roles to improve the development of osteo-compatible and osteo-promotive biomaterials. This review article expresses the necessity to further study OsteoMacs and MNGCs to understand their function in bone biomaterial tissue integration including dental/orthopedic implants and bone grafting materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM To associate the dimension of the facial bone wall with clinical, radiological, and patient-centered outcomes at least 10 years after immediate implant placement with simultaneous guided bone regeneration in a retrospective study. MATERIAL AND METHODS Primary endpoint was the distance from the implant shoulder (IS) to the first bone-to-implant contact (IS-BIC10y ). Secondary endpoints included the facial bone thickness (BT10y ) 2, 4, and 6 mm apical to the IS, and the implant position. At baseline, the horizontal defect width (HDWBL ) from the implant surface to the alveolar wall was recorded. At recall, distance from the IS to the mucosal margin (IS-MM10y ), degree of soft tissue coverage of the mesial and distal aspects of the implants (PISm10y , PISd10y ; Papilla Index), pocket probing depth (PPD10y ), and patient-centered outcomes were determined. Width of the keratinized mucosa (KM), Full-Mouth Plaque and Bleeding Score (FMPS, FMBS) were available for both time points. RESULTS Of the 20 patients who underwent immediate implant placement with simultaneous guided bone regeneration and transmucosal healing, nine males and eight females with a median age of 62 years (42 min, 84 max) were followed up for a median period of 10.5 y (min 10.1 max 11.5). The 10-year implant survival rate was 100%. Multivariate regression analysis revealed a correlation of the IS-BIC10y , controlled for age and gender, with four parameters: HDWBL (P = 0.03), KMBL -10 (P = 0.02), BT10 4 mm (P = 0.01), and BT10 6 mm (P = 0.01). CONCLUSION Within the conditions of the present study, the horizontal defect width was the main indicator for the vertical dimension of the facial bone. The facial bone dimension was further associated with a reduction in the width of the keratinized mucosa and the dimension of the buccal bone.