935 resultados para BIOTIC INTERCHANGE
Resumo:
Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.
Resumo:
Macroalgae are the main primary producers of the temperate rocky shores providing a three-dimensional habitat, food and nursery grounds for many other species. During the past decades, the state of the coastal waters has deteriorated due to increasing human pressures, resulting in dramatic changes in coastal ecosystems, including macroalgal communities. To reverse the deterioration of the European seas, the EU has adopted the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), aiming at improved status of the coastal waters and the marine environment. Further, the Habitats Directive (HD) calls for the protection of important habitats and species (many of which are marine) and the Maritime Spatial Planning Directive for sustainability in the use of resources and human activities at sea and by the coasts. To efficiently protect important marine habitats and communities, we need knowledge on their spatial distribution. Ecological knowledge is also needed to assess the status of the marine areas by involving biological indicators, as required by the WFD and the MSFD; knowledge on how biota changes with human-induced pressures is essential, but to reliably assess change, we need also to know how biotic communities vary over natural environmental gradients. This is especially important in sea areas such as the Baltic Sea, where the natural environmental gradients create substantial differences in biota between areas. In this thesis, I studied the variation occurring in macroalgal communities across the environmental gradients of the northern Baltic Sea, including eutrophication induced changes. The aim was to produce knowledge to support the reliable use of macroalgae as indicators of ecological status of the marine areas and to test practical metrics that could potentially be used in status assessments. Further, the aim was to develop a methodology for mapping the HD Annex I habitat reefs, using the best available data on geology and bathymetry. The results showed that the large-scale variation in the macroalgal community composition of the northern Baltic Sea is largely driven by salinity and exposure. Exposure is important also on smaller spatial scales, affecting species occurrence, community structure and depth penetration of algae. Consequently, the natural variability complicates the use of macroalgae as indicators of human-induced changes. Of the studied indicators, the number of perennial algal species, the perennial cover, the fraction of annual algae, and the lower limit of occurrence of red and brown perennial algae showed potential as usable indicators of ecological status. However, the cumulated cover of algae, commonly used as an indicator in the fully marine environments, showed low responses to eutrophication in the area. Although the mere occurrence of perennial algae did not show clear indicator potential, a distinct discrepancy in the occurrence of bladderwrack, Fucus vesiculosus, was found between two areas with differing eutrophication history, the Bothnian Sea and the Archipelago Sea. The absence of Fucus from many potential sites in the outer Archipelago Sea is likely due to its inability to recover from its disappearance from the area 30-40 years ago, highlighting the importance of past events in macroalgal occurrence. The methodology presented for mapping the potential distribution and the ecological value of reefs showed, that relatively high accuracy in mapping can be achieved by combining existing available data, and the maps produced serve as valuable background information for more detailed surveys. Taken together, the results of the theses contribute significantly to the knowledge on macroalgal communities of the northern Baltic Sea that can be directly applied in various management contexts.
Resumo:
We examined the relationships between environmental variations in lotic ecosystems with the seasonal dynamics of macroalgae communities at different spatial scales: drainage basin of two rivers (Rio das Pedras and Rio Marrecas), shading (open and shaded stream segments), mesohabitat (riffles and pools), and microhabitats. Data collections were made on a monthly basis between January and December/2007. A total of 16 taxa were encountered (13 species and 3 vegetative groups). All of the biotic parameters (richness, abundance, diversity, equitability, and dominance) were found to be highly variable at all of the spatial scales evaluated. On the other hand, abiotic variables demonstrated differences only at mesohabitat (in terms of current velocity) and shaded habitat (in terms of irradiance) scales. The seasonality of the macroalgae community structure was strongly influenced by microhabitat variables (current velocity, substrate H', and irradiance), demonstrating their importance over time and at different scales. Regional variables (temperature, oxygen saturation, specific conductance, pH, and turbidity) were found to have little influence on the temporal dynamics of the macroalgae communities evaluated.
Resumo:
Highly dynamic systems, often considered as resilient systems, are characterised by abiotic and biotic processes under continuous and strong changes in space and time. Because of this variability, the detection of overlapping anthropogenic stress is challenging. Coastal areas harbour dynamic ecosystems in the form of open sandy beaches, which cover the vast majority of the world’s ice-free coastline. These ecosystems are currently threatened by increasing human-induced pressure, among which mass-development of opportunistic macroalgae (mainly composed of Chlorophyta, so called green tides), resulting from the eutrophication of coastal waters. The ecological impact of opportunistic macroalgal blooms (green tides, and blooms formed by other opportunistic taxa), has long been evaluated within sheltered and non-tidal ecosystems. Little is known, however, on how more dynamic ecosystems, such as open macrotidal sandy beaches, respond to such stress. This thesis assesses the effects of anthropogenic stress on the structure and the functioning of highly dynamic ecosystems using sandy beaches impacted by green tides as a study case. The thesis is based on four field studies, which analyse natural sandy sediment benthic community dynamics over several temporal (from month to multi-year) and spatial (from local to regional) scales. In this thesis, I report long-lasting responses of sandy beach benthic invertebrate communities to green tides, across thousands of kilometres and over seven years; and highlight more pronounced responses of zoobenthos living in exposed sandy beaches compared to semi-exposed sands. Within exposed sandy sediments, and across a vertical scale (from inshore to nearshore sandy habitats), I also demonstrate that the effects of the presence of algal mats on intertidal benthic invertebrate communities is more pronounced than that on subtidal benthic invertebrate assemblages, but also than on flatfish communities. Focussing on small-scale variations in the most affected faunal group (i.e. benthic invertebrates living at low shore), this thesis reveals a decrease in overall beta-diversity along a eutrophication-gradient manifested in the form of green tides, as well as the increasing importance of biological variables in explaining ecological variability of sandy beach macrobenthic assemblages along the same gradient. To illustrate the processes associated with the structural shifts observed where green tides occurred, I investigated the effects of high biomasses of opportunistic macroalgae (Ulva spp.) on the trophic structure and functioning of sandy beaches. This work reveals a progressive simplification of sandy beach food web structure and a modification of energy pathways over time, through direct and indirect effects of Ulva mats on several trophic levels. Through this thesis I demonstrate that highly dynamic systems respond differently (e.g. shift in δ13C, not in δ15N) and more subtly (e.g. no mass-mortality in benthos was found) to anthropogenic stress compared to what has been previously shown within more sheltered and non-tidal systems. Obtaining these results would not have been possible without the approach used through this work; I thus present a framework coupling field investigations with analytical approaches to describe shifts in highly variable ecosystems under human-induced stress.
Resumo:
ABSTRACT Fescues consist of wild and cultivated grasses that have adapted to a wide range of environmental conditions. They are an excellent model species for evolutionary ecology studies that investigate symbiosis and polyploidization and their effects on plant performance. First, they are frequently infected with symbiotic endophytic fungi known to affect a plant’s ability to cope with biotic and abiotic environmental factors. Second, fescue species have been reported to have substantial intraspecific variation in their ploidy level and morphology. In my thesis, I examined large-scale generalizations for frequency of polyploidy and endophyte infections and their effects on plant morphology. As a model species, I selected red (Festuca rubra) and viviparous sheep’s (F. vivipara) fescues. They are closely related, but they differ in terms of distribution and endophyte infection frequency. I investigated the biogeographic pattern and population biology of 29 red and 12 viviparous sheep’s fescue populations across ≈300 latitudes in Europe (400-690 N). To examine plant ploidy levels, I implemented time- and cost-efficient plate-based high throughput flow cytometric analysis. This efficient procedure enabled me to analyze over 1000 red fescue individuals. I found three ploidy levels among them: overall 84 %, 9 % and 7 % of the red fescue plants were hexaploid, tetraploid and octoploid, respectively. However, all viviparous sheep’s fescue plants were tetraploid. Ploidy level of red fescue appeared to some extent follow gradients in latitude and primary production as suggested by previous studies, but these results could be explained better by taking the sampling design and local adaptation into account. Three Spanish populations were mostly tetraploids and one high elevation population in northernmost Finland (Halti) was octoploid, while most other populations (25 sites) were dominated by hexaploids. Endophyte infection frequencies of wild fescue populations varied from 0 to 81 % in red fescue populations and from 0 to 30 % in viviparous sheep’s fescue populations. No gradients with latitude or primary production of the sites were detected. As taxonomy of red fescues is somewhat unclear, I also studied morphology, ploidy variation and endophyte status of proposed subspecies of European red fescues. Contrary to previous literature, different ploidy levels occurred in the same subspecies. In addition to wild fescues, I also used two agronomically important cultivars of meadow and tall fescue (Schedonorus phoenix and S. pratensis). As grass-legume mixtures have an agronomic advantage over monocultures in meadows, I carried out a mixture/competition experiment with fescues and red clover to find that species composition, nutrient availability and endophyte status together determined the total biomass yield that was higher in mixtures compared to monocultures. The results of this thesis demonstrate the importance of local biotic and abiotic factors such as grazing gradients and habitat types, rather than suggested general global geographical or environmental factors on grass polyploidization or its association with symbiotic endophytic fungi. I conclude that variation in endophyte infection frequencies and ploidy levels of wild fescues support the geographic mosaic theory of coevolution. Historical incidents, e.g., glaciation and present local factors, rather than ploidy or endophyte status, determine fescue morphology.
Resumo:
In marine benthic communities, herbivores consume a considerable proportion of primary producer biomass and, thus, generate selection for the evolution of resistance traits. According to the theory of plant defenses, resistance traits are costly to produce and, consequently, inducible resistance traits are adaptive in conditions of variable herbivory, while in conditions of constant/strong herbivory constitutive resistance traits are selected for. The evolution of resistance plasticity may be constrained by the costs of resistance or lack of genetic variation in resistance. Furthermore, resource allocation to induced resistance may be affected by higher trophic levels preying on herbivores. I studied the resistance to herbivory of a foundation species, the brown alga Fucus vesiculosus. By using factorial field experiments, I explored the effects of herbivores and fish predators on growth and resistance of the alga in two seasons. I explored genetic variation in and allocation costs of resistance traits as well as their chemical basis and their effects on herbivore performance. Using a field experiment I tested if induced resistance spreads via water-borne cues from one individual to another in relevant ecological conditions. I found that in the northern Baltic Sea F. vesiculosus communities, strength of three trophic interactions strongly vary among seasons. The highly synchronized summer reproduction of herbivores promoted their escape from the top-down control of fish predators in autumn. This resulted into large grazing losses in algal stands. In spring, herbivore densities were low and regulated by fish, which, thus,enhanced algal growth. The resistance of algae to herbivory increased with an increase in constitutive phlorotannin content. Furthermore, individuals adopted induced resistance when grazed and when exposed to water-borne cues originating from grazing of conspecific algae both in the laboratory and in field conditions. Induced resistance was adopted to a lesser extent in the presence of fish predators. The results in this thesis indicate that inducible resistance in F. vesiculosus is an adaptation to varying herbivory in the northern Baltic Sea. The costs of resistance and strong seasonality of herbivory have likely contributed to the evolution of this defense strategy. My findings also show that fish predators have positive cascading effects on F. vesiculosus which arise via reduced herbivory but possibly also through reduced resource allocation to resistance. I further found evidence that the spread of resistance via water-borne cues also occurs in ecologically realistic conditions in natural marine sublittoral. Thus, water-borne induction may enable macroalgae to cope with the strong grazing pressure characteristic of marine benthic communities. The results presented here show that seasonality can have pronounced effects on the biotic interactions in marine benthic communities and thereafter influence the evolution of resistance traits in primary producers.
Resumo:
All-electron partitioning of wave functions into products ^core^vai of core and valence parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of motion of core and valence electrons, and core-valence overlap. These effects are studied with the variational Monte Carlo method using appropriately designed wave functions for the first-row atoms and positive ions. It is shown that the loss of antisymmetry with respect to interchange of core and valence electrons is a dominant effect which increases rapidly through the row, while the effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and valence parts partially substitutes the exclusion principle and is absolutely necessary for meaningful calculations with partitioned wave functions. Core-valence overlap may lead to nonsensical values of the total energy. It has been found that even relatively crude core-valence partitioned wave functions generally can estimate ionization potentials with better accuracy than that of the traditional, non-partitioned ones, provided that they achieve maximum separation (independence) of core and valence shells accompanied by high internal flexibility of ^core and Wvai- Our best core-valence partitioned wave function of that kind estimates the IP's with an accuracy comparable to the most accurate theoretical determinations in the literature.
Resumo:
The rock sequence of the Tertiary Beda Formation of S. W. concession 59 and 59F block in Sirte Basin of Libya has been subdivided into twelve platformal carbonate microfacies. These microfacies are dominated by muddy carbonates, such as skeletal mudstones, wackestones, and packstones with dolomites and anhydrite. Rock textures, faunal assemblages and sedimentary structures suggest shallow, clear, warm waters and low to moderate energy conditions within the depositional shelf environment. The Beda Formation represents a shallowing-upward sequence typical of lagoonal and tidal flat environments marked at the top by sabkha and brackish-water sediments. Microfossils include benthonic foraminifera, such as miliolids, Nummulites, - oerculina and other smaller benthonics, in addition to dasycladacean algae, ostracods, molluscs, echinoderms, bryozoans and charophytes. Fecal pellets and pelloids, along with the biotic allochems, contributed greatly to the composition of the various microfacies. Dolomite, where present, is finely crystalline and an early replacement product. Anhydrite occurs as nodular, chickenwire and massive textures indicating supratidal sabkha deposition. Compaction, micr it i zat ion , dolomit izat ion , recrystallization, cementation, and dissolution resulted in alteration and obliteration of primary sedimentary structures of the Beda Formation microfacies. The study area is located in the Gerad Trough which developed as a NE-SW trending extensional graben. The Gerad trough was characterized by deep-shallow water conditions throughout the deposition of the Beda Formation sediments. The study area is marked by several horsts and grabens; as a result of extent ional tectonism. The area was tectonically active throughout the Tertiary period. Primary porosity is intergranular and intragranular, and secondary processes are characterized by dissolution, intercrystalline, fracture and fenestral features. Diagenesis, through solution leaching and dolomitization, contributed greatly to porosity development. Reservoir traps of the Beda Formation are characterized by normal fault blocks and the general reservoir characteristics/properties appear to be facies controlled.
Resumo:
years 8 months) and 24 older (M == 7 years 4 months) children. A Monitoring Process Model (MPM) was developed and tested in order to ascertain at which component process ofthe MPM age differences would emerge. The MPM had four components: (1) assessment; (2) evaluation; (3) planning; and (4) behavioural control. The MPM was assessed directly using a referential communication task in which the children were asked to make a series of five Lego buildings (a baseline condition and one building for each MPM component). Children listened to instructions from one experimenter while a second experimenter in the room (a confederate) intetjected varying levels ofverbal feedback in order to assist the children and control the component ofthe MPM. This design allowed us to determine at which "stage" ofprocessing children would most likely have difficulty monitoring themselves in this social-cognitive task. Developmental differences were obselVed for the evaluation, planning and behavioural control components suggesting that older children were able to be more successful with the more explicit metacomponents. Interestingly, however, there was no age difference in terms ofLego task success in the baseline condition suggesting that without the intelVention ofthe confederate younger children monitored the task about as well as older children. This pattern ofresults indicates that the younger children were disrupted by the feedback rather than helped. On the other hand, the older children were able to incorporate the feedback offered by the confederate into a plan ofaction. Another aim ofthis study was to assess similar processing components to those investigated by the MPM Lego task in a more naturalistic observation. Together the use ofthe Lego Task ( a social cognitive task) and the naturalistic social interaction allowed for the appraisal of cross-domain continuities and discontinuities in monitoring behaviours. In this vein, analyses were undertaken in order to ascertain whether or not successful performance in the MPM Lego Task would predict cross-domain competence in the more naturalistic social interchange. Indeed, success in the two latter components ofthe MPM (planning and behavioural control) was related to overall competence in the naturalistic task. However, this cross-domain prediction was not evident for all levels ofthe naturalistic interchange suggesting that the nature ofthe feedback a child receives is an important determinant ofresponse competency. Individual difference measures reflecting the children's general cognitive capacity (Working Memory and Digit Span) and verbal ability (vocabulary) were also taken in an effort to account for more variance in the prediction oftask success. However, these individual difference measures did not serve to enhance the prediction oftask performance in either the Lego Task or the naturalistic task. Similarly, parental responses to questionnaires pertaining to their child's temperament and social experience also failed to increase prediction oftask performance. On-line measures ofthe children's engagement, positive affect and anxiety also failed to predict competence ratings.
Resumo:
In the literature, introduced taxa are assumed to be present, more abundant, and occupy greater physical space in portions of ecosystems disturbed by human activity. This study tested this principle in two sites, Short Hills provincial Park ("SHU) and Backus Woods ("B~l"). spatial distribution of introduced taxa of vegetation, isopods, and earthworms was determined with the runs test along 300m transects encompassing gradients of anthropogenic disturbance severity. The hypothesis was that introduced taxa would be aggregated along these transects; the null hypothesis was that they would not be aggregated. The null hypothesis was rejected for the introduced taxa as a unit, and vegetation and earthworms individually. Introduced taxa were aggregated along 53.33% (N~30) and 57.14% (N~21) of the transects in SH and BW (respectively). Introduced vegetation (90.00%, N~10 and 100.00%, N~7) and earthworms (50.00%, N~10 and 50.00%, N~8) were also significantly aggregated within the sites. Introduced isopods, however, were not significantly aggregated at either place (20. 00%, N-=10 and 16. 67%, ~J~6). This study demonstrated that introduced taxa are aggregated within ecosystems disturbed by human activity. However, since introduced isopods were not significantly aggregated it was also shown that taxa respond differently.
Resumo:
The resurgence of malaria in highland regions of Africa, Oceania and recently in South America underlines the importance of the study of the ecology of highland mosquito vectors of malaria. Since the incidence of malaria is limited by the distribution of its vectors, the purpose of this PhD thesis was to examine aspects of the ecology of Anopheles mosquitoes in the Andes of Ecuador, South America. A historical literature and archival data review (Chapter 2) indicated that Anopheles pseudopunctipennis transmitted malaria in highland valleys of Ecuador prior to 1950, although it was eliminated through habitat removal and the use of chemical insecticides. Other anopheline species were previously limited to low-altitude regions, except in a few unconfirmed cases. A thorough larval collection effort (n=438 attempted collection sites) in all road-accessible parts of Ecuador except for the lowland Amazon basin was undertaken between 2008 - 2010 (Chapter 3). Larvae were identified morphologically and using molecular techniques (mitochondrial COl gene), and distribution maps indicated that all five species collected (Anopheles albimanus, An. pseudopunctipennis, Anopheles punctimacula, Anopheles oswaldoi s.l. and Anopheles eiseni) were more widespread throughout highland regions than previously recorded during the 1940s, with higher maximum altitudes for all except An. pseudopunctipennis (1541 m, 1930 m, 1906 m, 1233 m and 1873 m, respectively). During larval collections, to characterize species-specific larval habitat, a variety of abiotic and biotic habitat parameters were measured and compared between species-present and species-absent sites using chi-square tests and stepwise binary logistic regression analyses (Chapter 4). An. albimanus was significantly associated with permanent pools with sand substrates and An. pseudopunctipennis with gravel and boulder substrates. Both species were significantly associated with floating cyanobacterial mats and warmer temperatures, which may limit their presence in cooler highland regions. Anopheles punctimacula was collected more often than expected from algae-free, shaded pools with higher-than-average calculated dissolved oxygen. Anopheles oswaldoi s.l., the species occurring on the Amazonian side of the Andes, was associated with permanent, anthropogenic habitats such as roadside ditches and ponds. To address the hypothesis that human land use change is responsible for the emergence of multiple highland Anopheles species by creating larval habitat, common land uses in the western Andes were surveyed for standing water and potential larval habitat suitability (Chapter 5). Rivers and road edges provided large amounts of potentially suitable anopheline habitat in the western Andes, while cattle pasture also created potentially suitable habitat in irrigation canals and watering ponds. Other common land uses surveyed (banana farms, sugarcane plantations, mixed tree plantations, and empty lots) were usually established on steep slopes and had very little standing water present. Using distribution and larval habitat data, a GIS-based larval habitat distribution model for the common western species was constructed in ArcGIS v.l 0 (ESRI 2010) using derived data layers from field measurements and other sources (Chapter 6). The additive model predicted 76.4 - 97.9% of the field-observed collection localities of An. albimanus, An. pseudopunctipennis and An. punctimacula, although it could not accurately distinguish between species-absent and speciespresent sites due to its coarse scale. The model predicted distributional expansion and/or shift of one or more anopheline species into the following highland valleys with climate warming: Mira/Chota, Imbabura province, Tumbaco, Pichincha province, Pallatanga and Sibambe, Chimborazo province, and Yungilla, Azuay province. These valleys may serve as targeted sites of future monitoring to prevent highland epidemics of malaria. The human perceptions of malaria and mosquitoes in relation to land management practices were assessed through an interview-based survey (n=262) in both highlands and lowlands, of male and female land owners and managers of five property types (Chapter 7). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. In conclusion, this interdisciplinary thesis examines the occurrence of Anopheles species in the lowland transition area and highlands in Ecuador, from a historic, geographic, ecological and sociological perspective.
Resumo:
Metarhizium is a soil-inhabiting fungus currently used as a biological control agent against various insect species, and research efforts are typically focused on its ability to kill insects. In section 1, we tested the hypothesis that species of Metarhizium are not randomly distributed in soils but show plant rhizosphere-specific associations. Results indicated an association of three Metarhizium species (Metarhizium robertsii, M. brunneum and M. guizhouense) with the rhizosphere of certain types of plant species. M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense, which was supported by in vitro experiments with grass root exudate. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types. In section 2, we explored the variation in the insect adhesin, Madl, and the plant adhesin, Mad2, in fourteen isolates of Metarhizium representing seven different species. Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions. Phylogenetic analysis of 5' EF-Ia, which is used for species identification, as well as Madl and Mad2 sequences demonstrated that the Mad2 phylogeny is more congruent with 5' EF-1a than Madl. This suggests Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation. While other abiotic and biotic factors cannot be excluded in contributing to divergence, it appears that plant associations have been the driving factor causing divergence among Metarhizium species.
Resumo:
Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1a, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 59 EF-1a than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.
Resumo:
Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1a, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 59 EF-1a than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.