581 resultados para Autologous


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1997, the Swiss Transplant Working Group Blood and Marrow Transplantation (STABMT) initiated a mandatory national registry for all haematopoietic stem cell transplants (HSCT) in Switzerland. As of 2003, information was collected of 2010 patients with a first HSCT (577 allogeneic (29%) and 1433 autologous (71%) HSCT) and 616 additional re-transplants. This included 1167 male and 843 female patients with a median age of 42.4 years (range 0.2-76.6 years). Main indications were leukaemias (592; 29%) lymphoproliferative disorders (1,061; 53%), solid tumours (295; 15%) and non-malignant disorders (62; 3%). At the time of analysis 1,263 patients were alive (63%), 747 had died (37%). Probability of survival, transplant related mortality or relapse at 5 years was 52%, 21%, 36% for allogeneic and 54%, 5%, 60% for autologous HSCT. Outcome depended on indication, donor type, stem cell source and age of patient. HSCT is an established therapy in Switzerland. These data describe current practice and outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current models of intracerebral hematoma are difficult to use for neurotransplantation studies because of high mortality and important variations of morphology, size and location of blood deposits. We propose a modification of the autologous blood infusion technique in rats to reduce these limitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fillers are an important tool in the armamentarium of the physician combating aging phenomena. A wide variety of filler substances are now available that meet many, but by far not all, needs in aesthetic medicine. The most commonly used substances now are hyaluronic acid and collagen preparations that have slightly different indications, but collagen requires pre-use testing to rule out inflammatory complications. Poly-L-lactic acid has gained its place in the filling of adipose tissue wasting in HIV-infected patients. Autologous fat is easy to harvest and inject and has virtually no risk of adverse side effects. Permanent fillers may be of advantage but carry the risk of permanent adverse reactions. Skillful combination of different fillers as well as with botulinum toxin injections and other cosmetic procedures may give optimal results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Awake hamsters equipped with the dorsal window chamber preparation were subjected to hemorrhage of 50% of the estimated blood volume. Initial resuscitation (25% of estimated blood volume) with polymerized bovine hemoglobin (PBH) or 10% hydroxyethyl starch (HES) occurred in concert with an equivolumetric bleeding to simulate the early, prehospital setting (exchange transfusion). Resuscitation (25% of estimated blood volume) without bleeding was performed with PBH, HES, or autologous red blood cells (HES-RBCs). Peripheral microcirculation, tissue oxygenation, and systemic hemodynamic and blood gas parameters were assessed. After exchange transfusion, base deficit was -8.6 +/- 3.7 mmol/L (PBH) and -5.1 +/- 5.3 mmol/L (HES) (not significant). Functional capillary density was 17% +/- 6% of baseline (PBH) and 31% +/- 11% (HES) (P < 0.05) and arteriolar diameter 73% +/- 3% of baseline (PBH) and 90% + 5% (HES) (P < 0.01). At the end, hemoglobin levels were 3.7 +/- 0.3 g/dL with HES, 8.2 +/- 0.6 g/dL with PBH, and 10.4 +/- 0.8 g/dL with HES-RBCs (P < 0.01 HES vs. PBH and HES-RBCs, P < 0.05 PBH vs. HES-RBCs). Base excess was restored to baseline with PBH and HES-RBCs, but not with HES (P < 0.05). Functional capillary density was 46% +/- 5% of baseline (PBH), 62% + 20% (HES-RBCs), and 36% +/- 19% (HES) (P < 0.01 HES-RBCs vs. HES). Peripheral oxygen delivery and consumption was highest with HES-RBCs, followed by PBH (P < 0.05 HES-RBCs vs. PBH, P < 0.01 HES-RBCs and PBH vs. HES). In conclusion, the PBH led to a correction of base deficit comparable to blood transfusion. However, oxygenation of the peripheral tissue was inferior with PBH. This was attributed to its negative impact on the peripheral microcirculation caused by arteriolar vasoconstriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early prenatal diagnosis and in utero therapy of certain fetal diseases have the potential to reduce fetal morbidity and mortality. The intrauterine transplantation of stem cells provides in some instances a therapeutic option before definitive organ failure occurs. Clinical experiences show that certain diseases, such as immune deficiencies or inborn errors of metabolism, can be successfully treated using stem cells derived from bone marrow. However, a remaining problem is the low level of engraftment that can be achieved. Efforts are made in animal models to optimise the graft and study the recipient's microenvironment to increase long-term engraftment levels. Our experiments in mice show similar early homing of allogeneic and xenogeneic stem cells and reasonable early engraftment of allogeneic murine fetal liver cells (17.1% donor cells in peripheral blood 4 weeks after transplantation), whereas xenogeneic HSC are rapidly diminished due to missing self-renewal and low differentiation capacities in the host's microenvironment. Allogeneic murine fetal liver cells have very good long-term engraftment (49.9% donor cells in peripheral blood 16 weeks after transplantation). Compared to the rodents, the sheep model has the advantage of body size and gestation comparable to the human fetus. Here, ultrasound-guided injection techniques significantly decreased fetal loss rates. In contrast to the murine in utero model, the repopulation capacities of allogeneic ovine fetal liver cells are lower (0.112% donor cells in peripheral blood 3 weeks after transplantation). The effect of MHC on engraftment levels seems to be marginal, since no differences could be observed between autologous and allogeneic transplantation (0.117% donor cells vs 0.112% donor cells in peripheral blood 1 to 2 weeks after transplantation). Further research is needed to study optimal timing and graft composition as well as immunological aspects of in utero transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering (TE) has emerged as a promising new therapy for the treatment of damaged tissues and organs. Adult stem cells are considered as an attractive candidate cell type for cell-based TE. Mesenchymal stem cells (MSC) have been isolated from a variety of tissues and tested for differentiation into different cell lineages. While clinical trials still await the use of human MSC, horse tendon injuries are already being treated with autologous bone marrow-derived MSC. Given that the bone marrow is not an optimal source for MSC due to the painful and risk-containing sampling procedure, isolation of stem cells from peripheral blood would bring an attractive alternative. Adherent fibroblast-like cells have been previously isolated from equine peripheral blood. However, their responses to the differentiation conditions, established for human bone marrow MSC, were insufficient to fully confirm their multilineage potential. In this study, differentiation conditions were optimized to better evaluate the multilineage capacities of equine peripheral blood-derived fibroblast-like cells (ePB-FLC) into adipogenic, osteogenic, and chondrogenic pathways. Adipogenic differentiation using rabbit serum resulted in a high number of large-size lipid droplets three days upon induction. Cells' expression of alkaline phosphatase and calcium deposition upon osteogenic induction confirmed their osteogenic differentiation capacities. Moreover, an increase of dexamethasone concentration resulted in faster osteogenic differentiation and matrix mineralization. Finally, induction of chondrogenesis in pellet cultures resulted in an increase in cartilage-specific gene expression, namely collagen II and aggrecan, followed by protein deposition after a longer induction period. This study therefore demonstrates that ePB-FLC have the potential to differentiate into adipogenic, osteogenic, and chondrogenic mesenchymal lineages. The presence of cells with confirmed multilineage capacities in peripheral blood has important clinical implications for cell-based TE therapies in horses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: In human T cells, telomerase is transiently expressed upon activation and stimulation and, as shown previously, telomerase levels are able to control the lifespan of T cells. To improve T-cell expansion it is of critical importance to understand the effects of culture parameters on telomerase activity and lifespan. METHODS: We investigated the influence of culture condition (FCS, human AB serum and autologous serum) and stimulation (PHA/feeder cells, anti-CD3/CD28 beads) on the lifespan, clonogenicity (number of positive wells), cell cycle, telomerase activity and telomere length of T cells in vitro. RESULTS: The proliferative lifespan of T cells expanded with PHA/feeder cells and autologous serum from different donors was doubled compared with stimulation with PHA/feeder cells and AB serum. No or only a small difference was found for T cells expanded with anti-CD3/CD28 beads and autologous or AB serum. The use of autologous serum also increased the clonogenicity to about three-fold compared with the use of AB serum or FCS, without any signs of differences in the fractions of cycling cells. Interestingly, T cells cultured with autologous serum exhibited a significantly higher telomerase activity at day 6 after stimulation and a reduced decline of telomerase activity compared with cultures with AB serum. DISCUSSION: The use of autologous serum combined with PHA stimulation and feeder cells remarkably extends the proliferative lifespan and clonogenicity and increases the telomerase activity of human T cells in vitro. This might be useful for applications where large numbers of specific T cells are required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of all efforts to reduce the need of allogeneic blood transfusions is to avoid associated risks. There should particularly be a favourable effect according to the rate of transfusion-transmitted virus infections and immunological side-effects. The acceptance of an individually adjusted lowest haematocrit level and the minimisation of intra-operative blood loss by the application of optimal surgical techniques are among the most essential strategies to reduce or even avoid allogeneic blood transfusions. In addition the following interventions are generally accepted: Preoperative autologous blood donation, where appropriate supported by erythropoietin Preoperative haemodilution, where appropriate supported by erythropoietin Intra- and postoperative blood salvage Topical or systemic pharmacologic interventions to accelerate haemostasis Controlled hypotension Efficacy and indication of the different measures always depend on the individual circumstances of the specific patient. Therefore one should develop an individual approach for every case. In this context the most important subjects are an optimal coordination and if required an appropriate combination of the discussed methods. Algorithms which preoperatively allow approximate calculation of expected transfusion need may be a meaningful tool to facilitate blood conservation planning. However, at the same time one must consider that all strategies to reduce allogeneic transfusion needs are also associated with particular risks. Therefore one has to weigh carefully the pros and cons prior to their application, including the possible alternative of allogeneic transfusion in one's decision making process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECT: The aim of this study was to develop and characterize a new orthotopic, syngeneic, transplantable mouse brain tumor model by using the cell lines Tu-9648 and Tu-2449, which were previously isolated from tumors that arose spontaneously in glial fibrillary acidic protein (GFAP)-v-src transgenic mice. METHODS: Striatal implantation of a 1-microl suspension of 5000 to 10,000 cells from either clone into syngeneic B6C3F1 mice resulted in tumors that were histologically identified as malignant gliomas. Prior subcutaneous inoculations with irradiated autologous cells inhibited the otherwise robust development of a microscopically infiltrating malignant glioma. Untreated mice with implanted tumor cells were killed 12 days later, when the resultant gliomas were several millimeters in diameter. Immunohistochemically, the gliomas displayed both the astroglial marker GFAP and the oncogenic form of signal transducer and activator of transcription-3 (Stat3). This form is called tyrosine-705 phosphorylated Stat3, and is found in many malignant entities, including human gliomas. Phosphorylated Stat3 was particularly prominent, not only in the nucleus but also in the plasma membrane of peripherally infiltrating glioma cells, reflecting persistent overactivation of the Janus kinase/Stat3 signal transduction pathway. The Tu-2449 cells exhibited three non-random structural chromosomal aberrations, including a deletion of the long arm of chromosome 2 and an apparently balanced translocation between chromosomes 1 and 3. The GFAP-v-src transgene was mapped to the pericentromeric region of chromosome 18. CONCLUSIONS: The high rate of engraftment, the similarity to the high-grade malignant glioma of origin, and the rapid, locally invasive growth of these tumors should make this murine model useful in testing novel therapies for human malignant gliomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: This study aimed to evaluate the safety and patency rate of bovine mesenterial vein grafts (BMVG) for vascular access (VA) in hemodialysis patients (HDP), compared to expanded polytetrafluorethylene (ePTFE grafts) over a mid- to long-term period. METHODS: Patency and complication rate of 23 consecutive HDP with BMVG for VA were compared to a control group consisting of 23 similar HDP with ePTFE grafts. In both groups, the graft was placed preferably in a forearm loop configuration. The same surgeon performed all procedures. All patients were followed over a period of 4 yrs. RESULTS: Graft placement was successful in all patients. Patency rates did not differ significantly in both groups. However, there were less severe complications in the BMVG group. CONCLUSION: The BMVG is a viable alternative for HD access in patients where autologous construction is not possible, and should be given priority in patients with a failed ePTFE graft or high risk for infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osseointegration of titanium dental implants into the jaw bone, which is required for maintenance of the implant in the jaw, results in ankylosis. Dental implants are therefore very unlike natural teeth, which exhibit significant movement in response to mechanical forces. The ability to generate periodontal ligament (PDL) tissues onto dental implants would better mimic the functional characteristics of natural teeth, and would likely improve implant duration and function. OBJECTIVES: The objective of this study was to investigate the feasibility of bioengineering PDL tissues onto titanium implant surfaces. METHODS: Bilateral maxillary first and second molars of 8-week old rats were extracted and used to generate single cell suspensions of PDL tissues, which were expanded in culture. Immunohistochemistry and RT-PCR were used to identify putative PDL progenitor/stem cell populations and characterize stem cell properties, including self-renewal, multipotency and stem cell maker expression. Cultured rPDL cells were harvested at third passage, seeded onto Matrigel-coated titanium implants (1.75 mm x 1 mm), and placed into healed M1/M2 extraction sites. Non-cell seeded Matrigel-coated titanium implants served as negative controls. Implants were harvested after 8, 12, or 18 weeks. RESULTS: Cultured rPDL cells expressed the mesenchymal stem-cell marker STRO-1. Under defined culture conditions, PDL cells differentiated into adipogenic, neurogenic and osteogenic lineages. While control implants were largely surrounded by alveolar bone, experimental samples exhibited fibrous PDL-like tissues, and perhaps cementum, on the surface of experimental implants. CONCLUSIONS: PDL contains stem cells that can generate cementum/PDL-like tissue in vivo. Transplantation of these cells might hold promise as a therapeutic approach for the bioengineering of PDL tissues onto titanium implant. Further refinement of this method will likely result in improved dental implant strategies for use of autologous PDL tissue regeneration in humans. This research was supported by CIMIT, and NIH/NIDCR grant DE016132 (PCY), and TEACRS (YL).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various treatment options for deep cartilage defects are presently available. The efficacy of bone marrow stimulation with microfracture, of mosaicplasty and of various autologous chondrocyte implantation (ACI) techniques has been subject to numerous studies recently. Magnetic resonance imaging (MRI) has gained a major role in the assessment of cartilage repair. The introduction of high-field MRI to clinical routine makes high resolution and three-dimensional imaging readily available. New quantitative MRI techniques that directly visualize the molecular structure of cartilage may further advance our understanding of cartilage repair. The clinical evaluation of cartilage repair tissue is a complex issue, and MR imaging will become increasingly important both in research and in clinical routine. This article reviews the clinical aspects of microfracture, mosaicplasty, and ACI and reports the recent technical advances that have improved MRI of cartilage. Morphological evaluation methods are recommended for each of the respective techniques. Finally, an overview of T2 mapping and delayed gadolinium-enhanced MR imaging of cartilage in cartilage repair is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To use magnetization transfer (MT) imaging in the visualization of healthy articular cartilage and cartilage repair tissue after different cartilage repair procedures, and to assess global as well as zonal values and compare the results to T2-relaxation. MATERIALS AND METHODS: Thirty-four patients (17 after microfracture [MFX] and 17 after matrix-associated autologous cartilage transplantation [MACT]) were examined with 3T MRI. The MT ratio (MTR) was calculated from measurements with and without MT contrast. T2-values were evaluated using a multiecho, spin-echo approach. Global (full thickness of cartilage) and zonal (deep and superficial aspect) region-of-interest assessment of cartilage repair tissue and normal-appearing cartilage was performed. RESULTS: In patients after MFX and MACT, the global MTR of cartilage repair tissue was significantly lower compared to healthy cartilage. In contrast, using T2, cartilage repair tissue showed significantly lower T2 values only after MFX, whereas after MACT, global T2 values were comparable to healthy cartilage. For zonal evaluation, MTR and T2 showed a significant stratification within healthy cartilage, and T2 additionally within cartilage repair tissue after MACT. CONCLUSION: MT imaging is capable and sensitive in the detection of differences between healthy cartilage and areas of cartilage repair and might be an additional tool in biochemical cartilage imaging. For both MTR and T2 mapping, zonal assessment is desirable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To prospectively compare cartilage T2 values after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) repair procedures. MATERIALS AND METHODS: The study had institutional review board approval by the ethics committee of the Medical University of Vienna; informed consent was obtained. Twenty patients who underwent MFX or MACT (10 in each group) were enrolled. For comparability, patients of each group were matched by mean age (MFX, 40.0 years +/- 15.4 [standard deviation]; MACT, 41.0 years +/- 8.9) and postoperative interval (MFX, 28.6 months +/- 5.2; MACT, 27.4 months +/- 13.1). Magnetic resonance (MR) imaging was performed with a 3-T MR imager, and T2 maps were calculated from a multiecho spin-echo measurement. Global, as well as zonal, quantitative T2 values were calculated within the cartilage repair area and within cartilage sites determined to be morphologically normal articular cartilage. Additionally, with consideration of the zonal organization, global regions of interest were subdivided into deep and superficial areas. Differences between cartilage sites and groups were calculated by using a three-way analysis of variance. RESULTS: Quantitative T2 assessment of normal native hyaline cartilage showed similar results for all patients and a significant trend of increasing T2 values from deep to superficial zones (P < .05). In cartilage repair areas after MFX, global mean T2 was significantly reduced (P < .05), whereas after MACT, mean T2 was not reduced (P > or = .05). For zonal variation, repair tissue after MFX showed no significant trend between different depths (P > or = .05), in contrast to repair tissue after MACT, in which a significant increase from deep to superficial zones (P < .05) could be observed. CONCLUSION: Quantitative T2 mapping seems to reflect differences in repair tissues formed after two surgical cartilage repair procedures. (c) RSNA, 2008.