906 resultados para Auditory masking
Resumo:
The tendency to hear a tone sequence as 2 or more streams (segregated) builds up, but a sudden change in properties can reset the percept to 1 stream (integrated). This effect has not hitherto been explored using an objective measure of streaming. Stimuli comprised a 2.0-s fixed-frequency inducer followed by a 0.6-s test sequence of alternating pure tones (3 low [L]-high [H] cycles). Listeners compared intervals for which the test sequence was either isochronous or the H tones were slightly delayed. Resetting of segregation should make identifying the anisochronous interval easier. The HL frequency separation was varied (0-12 semitones), and properties of the inducer and test sequence were set to the same or different values. Inducer properties manipulated were frequency, number of onsets (several short bursts vs. one continuous tone), tone:silence ratio (short vs. extended bursts), level, and lateralization. All differences between the inducer and the L tones reduced temporal discrimination thresholds toward those for the no-inducer case, including properties shown previously not to affect segregation greatly. Overall, it is concluded that abrupt changes in a sequence cause resetting and improve subsequent temporal discrimination. (PsycINFO Database Record © 2009 APA, all rights reserved)
Resumo:
Onset asynchrony is an important cue for segregating sound mixtures. A harmonic of a vowel that begins before the other components contributes less to vowel quality. This asynchrony effect can be partly reversed by accompanying the leading portion of the harmonic with an octave-higher captor tone. The original interpretation was that the captor and leading portion formed a perceptual group, but it has recently been shown that the captor effect depends on neither a common onset time nor harmonic relations with the leading portion. Instead, it has been proposed that the captor effect depends on wideband inhibition in the central auditory system. Physiological evidence suggests that such inhibition occurs both within and across ears. Experiment 1 compared the efficacy of a pure-tone captor presented in the same or opposite ear to the vowel and leading harmonic. Contralateral presentation was at least as effective as ipsilateral presentation. Experiment 2 used multicomponent captors in a more comprehensive evaluation of harmonic influences on captor efficacy. Three captors with different fundamental frequencies were used, one of which formed a consecutive harmonic series with the leading harmonic. All captors were equally effective, irrespective of the harmonic relationship. These findings support and refine the inhibitory account. © 2007 Acoustical Society of America.
Resumo:
Previous claims that auditory stream segregation occurs in cochlear implant listeners are based on limited evidence. In experiment 1, eight listeners heard tones presented in a 30-s repeating ABA-sequence, with frequencies matching the centre frequencies of the implant's 22 electrodes. Tone A always stimulated electrode 11 (centre of the array); tone B stimulated one of the others. Tone repetition times (TRTs) from 50 to 200 ms were used. Listeners reported when they heard one or two streams. The proportion of time that each sequence was reported as segregated was consistently greater with increased electrode separation. However, TRT had no significant effect, and the perceptual reversals typical of normal-hearing listeners rarely occurred. The results may reflect channel discrimination rather than stream segregation. In experiment 2, six listeners performed a pitch-ranking task using tone pairs (reference = electrode 11). Listeners reported which tone was higher in pitch (or brighter in timbre) and their confidence in the pitch judgement. Similarities were observed in the individual pattern of results for reported segregation and pitch discrimination. Many implant listeners may show little or no sign of automatic stream segregation owing to the reduced perceptual space within which sounds can differ from one another. © 2006 Elsevier B.V. All rights reserved.
Resumo:
A harmonic that begins before the other harmonics contributes less than they do to vowel quality. This reduction can be partly reversed by accompanying the leading portion with a captor tone. This effect is usually interpreted as reflecting perceptual grouping of the captor with the leading portion. Instead, it has recently been proposed that the captor effect depends on broadband inhibition within the central auditory system. A test of psychophysical predictions based on this proposal showed that captor efficacy is (a) maintained for noise-band captors, (b) absent when a captor accompanies a harmonic that continues after the vowel, and (c) maintained for 80 ms or more over a gap between captor offset and vowel onset. These findings support and refine the inhibitory account. PsycINFO Database Record © 2006 APA, all rights reserved.
Resumo:
To investigate amblyopic contrast vision at threshold and above we performed pedestal-masking (contrastdiscrimination) experiments with a group of eight strabismic amblyopes using horizontal sinusoidal gratings (mainly 3 c/deg) in monocular, binocular and dichoptic configurations balanced across eye (i.e. five conditions). With some exceptions in some observers, the four main results were as follows. (1) For the monocular and dichoptic conditions, sensitivity was less in the amblyopic eye than in the good eye at all mask contrasts. (2) Binocular and monocular dipper functions superimposed in the good eye. (3) Monocular masking functions had a normal dipper shape in the good eye, but facilitation was diminished in the amblyopic eye. (4) A less consistent result was normal facilitation in dichoptic masking when testing the good eye, but a loss of this when testing the amblyopic eye. This pattern of amblyopic results was replicated in a normal observer by placing a neutral density filter in front of one eye. The two-stage model of binocular contrast gain control [Meese, T.S., Georgeson, M.A. & Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision 6, 1224--1243.] was `lesioned' in several ways to assess the form of the amblyopic deficit. The most successful model involves attenuation of signal and an increase in noise in the amblyopic eye, and intact stages of interocular suppression and binocular summation. This implies a behavioural influence from monocular noise in the amblyopic visual system as well as in normal observers with an ND filter over one eye.
Resumo:
To decouple interocular suppression and binocular summation we varied the relative phase of mask and target in a 2IFC contrast-masking paradigm. In Experiment I, dichoptic mask gratings had the same orientation and spatial frequency as the target. For in-phase masking, suppression was strong (a log-log slope of ∼1) and there was weak facilitation at low mask contrasts. Anti-phase masking was weaker (a log-log slope of ∼0.7) and there was no facilitation. A two-stage model of contrast gain control [Meese, T.S., Georgeson, M.A. and Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision, 6: 1224-1243] provided a good fit to the in-phase results and fixed its free parameters. It made successful predictions (with no free parameters) for the anti-phase results when (A) interocular suppression was phase-indifferent but (B) binocular summation was phase sensitive. Experiments II and III showed that interocular suppression comprised two components: (i) a tuned effect with an orientation bandwidth of ∼±33° and a spatial frequency bandwidth of >3 octaves, and (ii) an untuned effect that elevated threshold by a factor of between 2 and 4. Operationally, binocular summation was more tightly tuned, having an orientation bandwidth of ∼±8°, and a spatial frequency bandwidth of ∼0.5 octaves. Our results replicate the unusual shapes of the in-phase dichoptic tuning functions reported by Legge [Legge, G.E. (1979). Spatial frequency masking in human vision: Binocular interactions. Journal of the Optical Society of America, 69: 838-847]. These can now be seen as the envelope of the direct effects from interocular suppression and the indirect effect from binocular summation, which contaminates the signal channel with a mask that has been suppressed by the target. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The evidence that cochlear implant listeners routinely experience stream segregation is limited and equivocal. Streaming in these listeners was explored using tone sequences matched to the center frequencies of the implant’s 22 electrodes. Experiment 1 measured temporal discrimination for short (ABA triplet) and longer (12 AB cycles) sequences (tone/silence durations = 60/40 ms). Tone A stimulated electrode 11; tone B stimulated one of 14 electrodes. On each trial, one sequence remained isochronous, and tone B was delayed in the other; listeners had to identify the anisochronous interval. The delay was introduced in the second half of the longer sequences. Prior build-up of streaming should cause thresholds to rise more steeply with increasing electrode separation, but no interaction with sequence length was found. Experiment 2 required listeners to identify which of two target sequences was present when interleaved with distractors (tone/silence durations = 120/80 ms). Accuracy was high for isolated targets, but most listeners performed near chance when loudness-matched distractors were added, even when remote from the target. Only a substantial reduction in distractor level improved performance, and this effect did not interact with target-distractor separation. These results indicate that implantees often do not achieve stream segregation, even in relatively unchallenging tasks.
Resumo:
The use of fixation points (FPs) in visual psychophysics is common practice, though the costs and benefits of different fixation regimens have not been compared. Here we investigate the influence of several different types of FP configurations on the contrast detection of patches of sine-wave gratings. We find that for small targets (1°), the addition of a superimposed central FP can increase thresholds by a factor of 1.3 (2.5 dB) in comparison with no FP, and a factor of 1.5 (3.6 dB) in comparison with FPs that surround the target. These results are consistent with (i) a suppressive influence on the central region of the target from a central FP, and (ii) facilitatory influences from surrounding FPs. Our analysis of the slope of the psychometric function suggests that the facilitatory influence is not due to reduction of uncertainty. Plausible candidate causes for the facilitation are: (i) sensory interactions, (ii) aids to ocular accommodation and convergence, (iii) a reduction in eye-movements and (iv) more accurate placement of the observer’s window of attention. Masking by a central FP is not found for the suprathreshold task of contrast discrimination, suggesting that the masking effects of pedestal and FP do not combine linearly. This means that estimates of the level of masking produced by a contrast pedestal can depend on the details of the fixation point.
Resumo:
At detection threshold, sensitivity improves as the area of a test grating increases, but not when the test is placed on a pedestal and the task becomes contrast discrimination (G. E. Legge, & J. M. Foley, 1980). This study asks whether the abolition of area summation is specific to the situation where mask and test stimuli have the same spatial frequency and orientation ("within-channel" masking) or is more general, also occurring when mask and test stimuli are very different ("cross-channel" masking). Threshold versus contrast masking functions were measured where the test and mask were either both small (SS), both large (LL), or small and large, respectively (SL). For within-channel masking, facilitation and area summation were found at low mask contrasts, but the results for SS and LL converged at intermediate contrasts and above, replicating Legge and Foley (1980). For all three observers, less facilitation was found for SL than for SS. For cross-channel masking, area summation occurred across the entire masking function and results for SS and SL were identical. The results for the entire data set were well fit by an extended version of a contrast masking model (J. M. Foley, 1994) in which the weights of excitatory and suppressive surround terms were free parameters. I conclude that (i) there is no empirical abolition of area summation for cross-channel masking, (ii) within-channel area summation can be abolished empirically without being disabled in the model, (iii) observers are able to restrict the area of spatial integration, but not suppression, (iv) extending a cross-channel mask to the surround has no effect on contrast detection, and (v) there is a formal similarity between area summation and contrast adaptation. © 2004 ARVO.
Resumo:
Foley [J. Opt. Soc. Am. A 11 (1994) 1710] has proposed an influential psychophysical model of masking in which mask components in a contrast gain pool are raised to an exponent before summation and divisive inhibition. We tested this summation rule in experiments in which contrast detection thresholds were measured for a vertical 1 c/deg (or 2 c/deg) sine-wave component in the presence of a 3 c/deg (or 6 c/deg) mask that had either a single component oriented at -45° or a pair of components oriented at ±45°. Contrary to the predictions of Foley's model 3, we found that for masks of moderate contrast and above, threshold elevation was predicted by linear summation of the mask components in the inhibitory stage of the contrast gain pool. We built this feature into two new models, referred to as the early adaptation model and the hybrid model. In the early adaptation model, contrast adaptation controls a threshold-like nonlinearity on the output of otherwise linear pathways that provide the excitatory and inhibitory inputs to a gain control stage. The hybrid model involves nonlinear and nonadaptable routes to excitatory and inhibitory stages as well as an adaptable linear route. With only six free parameters, both models provide excellent fits to the masking and adaptation data of Foley and Chen [Vision Res. 37 (1997) 2779] but unlike Foley and Chen's model, are able to do so with only one adaptation parameter. However, only the hybrid model is able to capture the features of Foley's (1994) pedestal plus orthogonal fixed mask data. We conclude that (1) linear summation of inhibitory components is a feature of contrast masking, and (2) that the main aftereffect of spatial adaptation on contrast increment thresholds can be assigned to a single site. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The factors influencing the stream segregation of discrete tones and the perceived continuity of discrete tones as continuing through an interrupting masker are well understood as separate phenomena. Two experiments tested whether perceived continuity can influence the build-up of stream segregation by manipulating the perception of continuity during an induction sequence and measuring streaming in a subsequent test sequence comprising three triplets of low and high frequency tones (LHL-…). For experiment 1, a 1.2-s standard induction sequence comprising six 100-ms L-tones strongly promoted segregation, whereas a single extended L-inducer (1.1 s plus 100-ms silence) did not. Segregation was similar to that following the single extended inducer when perceived continuity was evoked by inserting noise bursts between the individual tones. Reported segregation increased when the noise level was reduced such that perceived continuity no longer occurred. Experiment 2 presented a 1.3-s continuous inducer created by bridging the 100-ms silence between an extended L-inducer and the first test-sequence tone. This configuration strongly promoted segregation. Segregation was also increased by filling the silence after the extended inducer with noise, such that it was perceived like a bridging inducer. Like physical continuity, perceived continuity can promote or reduce test-sequence streaming, depending on stimulus context.
Resumo:
The tendency to hear a sequence of alternating low (L) and high (H) frequency tones as two streams can be increased by a preceding induction sequence, even one composed only of same-frequency tones. Four experiments used such an induction sequence (10 identical L tones) to promote segregation in a shorter test sequence comprising L and H tones. Previous studies have shown that the build-up of stream segregation is usually reduced greatly when a sudden change in acoustic properties distinguishes all of the induction tones from their test-sequence counterparts. Experiment 1 showed that a single deviant tone, created by altering the final inducer (in frequency, level, duration, or replacement with silence) reduced reported segregation, often substantially. Experiment 2 partially replicated this finding, using changes in temporal discrimination as a measure of streaming. Experiments 3 and 4 varied the size of a frequency change applied to the deviant tone; the extent of resetting varied with size only gradually. The results suggest that resetting begins to occur once the change is large enough to be noticeable. Since the prior inducers always remained unaltered in the deviant-tone conditions, it is proposed that a single change actively resets the build-up evoked by the induction sequence.
Resumo:
Onset asynchrony is an important cue for auditory scene analysis. For example, a harmonic of a vowel that begins before the other components contributes less to the perceived phonetic quality. This effect was thought primarily to involve high-level grouping processes, because the contribution can be partly restored by accompanying the leading portion of the harmonic (precursor) with a synchronous captor tone an octave higher, and hence too remote to influence adaptation of the auditory-nerve response to that harmonic. However, recent work suggests that this restoration effect arises instead from inhibitory interactions relatively early in central auditory processing. The experiments reported here have reevaluated the role of adaptation in grouping by onset asynchrony and explored further the inhibitory account of the restoration effect. Varying the frequency of the precursor in the range ± 10% relative to the vowel harmonic (Experiment 1), or introducing a silent interval from 0 to 320 ms between the precursor and the vowel (Experiment 2), both produce effects on vowel quality consistent with those predicted from peripheral adaptation or recovery from it. However, there were some listeners for whom even the smallest gap largely eliminated the effect of the precursor. Consistent with the inhibitory account of the restoration effect, a contralateral pure tone whose frequency is close to that of the precursor is highly effective at restoring the contribution of the asynchronous harmonic (Experiment 3). When the frequencies match, lateralization cues arising from binaural fusion of the precursor and contralateral tone may also contribute to this restoration. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Resumo:
The possibility that developmental dyslexia results from low-level sensory processing deficits has received renewed interest in recent years. Opponents of such sensory-based explanations argue that dyslexia arises primarily from phonological impairments. However, many behavioural correlates of dyslexia cannot be explained sufficiently by cognitive-level accounts and there is anatomical, psychometric and physiological evidence of sensory deficits in the dyslexic population. This thesis aims to determine whether the low-level (pre-attentive) processing of simple auditory stimuli is disrupted in compensated adult dyslexics. Using psychometric and neurophysiological measures, the nature of auditory processing abnormalities is investigated. Group comparisons are supported by analysis of individual data in order to address the issue of heterogeneity in dyslexia. The participant pool consisted of seven compensated dyslexic adults and seven age and IQ matched controls. The dyslexic group were impaired, relative to the control group, on measures of literacy, phonological awareness, working memory and processing speed. Magnetoencephalographic recordings were conducted during processing of simple, non-speech, auditory stimuli. Results confirm that low-level auditory processing deficits are present in compensated dyslexic adults. The amplitude of N1m responses to tone pair stimuli were reduced in the dyslexic group. However, there was no evidence that manipulating either the silent interval or the frequency separation between the tones had a greater detrimental effect on dyslexic participants specifically. Abnormal MMNm responses were recorded in response to frequency deviant stimuli in the dyslexic group. In addition, complete stimulus omissions, which evoked MMNm responses in all control participants, failed to elicit significant MMNm responses in all but one of the dyslexic individuals. The data indicate both a deficit of frequency resolution at a local level of auditory processing and a higher-level deficit relating to the grouping of auditory stimuli, relevant for auditory scene analysis. Implications and directions for future research are outlined.
Resumo:
This thesis describes a series of experiments investigating both sequential and concurrent auditory grouping in implant listeners. Some grouping cues used by normal-hearing listeners should also be available to implant listeners, while others (e.g. fundamental frequency) are unlikely to be useful. As poor spectral resolution may also limit implant listeners’ performance, the spread of excitation in the cochlea was assessed using Neural Response Telemetry (NRT) and the results were related to those of the perceptual tasks. Experiment 1 evaluated sequential segregation of alternating tone sequences; no effect of rate or evidence of perceptual ambiguity was found, suggesting that automatic stream segregation had not occurred. Experiment 2 was an electrode pitch-ranking task; some relationship was found between pitch-ranking judgements (especially confidence scores) and reported segregation. Experiment 3 used a temporal discrimination task; this also failed to provide evidence of automatic stream segregation, because no interaction was found between the effects of sequence length and electrode separation. Experiment 4 explored schema-based grouping using interleaved melody discrimination; listeners were not able to segregate targets and distractors based on pitch differences, unless accompanied by substantial level differences. Experiment 5 evaluated concurrent segregation in a task requiring the detection of level changes in individual components of a complex tone. Generally, large changes were needed and abrupt changes were no easier to detect than gradual ones. In experiment 6, NRT testing confirmed substantially overlapping simulation by intracochlear electrodes. Overall, little or no evidence of auditory grouping by implant listeners was found.