860 resultados para Associative Algebras With Polynomial Identities
Resumo:
Let F be an infinite field of characteristic different from 2, G a group and * an involution of G extended by linearity to an involution of the group algebra FG. Here we completely characterize the torsion groups G for which the *-symmetric units of FG satisfy a group identity. When * is the classical involution induced from g -> g(-1), g is an element of G, this result was obtained in [ A. Giambruno, S. K. Sehgal, A. Valenti, Symmetric units and group identities, Manuscripta Math. 96 (1998) 443-461]. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We define intrinsic, natural and metrizable topologies T(Omega), T, T(s,Omega) and T(s) in G(Omega), (K) over bar, G(s)(Omega) and (K) over bar (s) respectively. The topology T(Omega) induces T, T(s,Omega) and T(s). The topologies T(s,Omega) and T(s) coincide with the Scarpalezos sharp topologies.
Resumo:
One may construct, for any function on the integers, an irreducible module of level zero for affine sl(2) using the values of the function as structure constants. The modules constructed using exponential-polynomial functions realize the irreducible modules with finite-dimensional weight spaces in the category (O) over tilde of Chari. In this work, an expression for the formal character of such a module is derived using the highest weight theory of truncations of the loop algebra.
Resumo:
Paul Auster’s City of Glass contains a jumble of identities. In fact, the identities are more numerous than the characters, and consequently, characters have several different identities. Some of these identities are obvious constructs, but with others the degree of construction is less evident. Poststructuralist theory, however, puts forward the idea that these seemingly original identities are in fact constructs to the same level as all others. Thus, this essay argues that there are no original identities; identities are constructed by outer factors. This essay discusses three outer factors contributing to the construction of identities, factors commonly discussed in poststructuralist criticism, these three being language, cultural codes and chance.
Resumo:
It is well known that cointegration between the level of two variables (labeled Yt and yt in this paper) is a necessary condition to assess the empirical validity of a present-value model (PV and PVM, respectively, hereafter) linking them. The work on cointegration has been so prevalent that it is often overlooked that another necessary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal to the past. The basis of this result is the use of rational expectations in forecasting future values of variables in the PVM. If this condition fails, the present-value equation will not be valid, since it will contain an additional term capturing the (non-zero) conditional expected value of future error terms. Our article has a few novel contributions, but two stand out. First, in testing for PVMs, we advise to split the restrictions implied by PV relationships into orthogonality conditions (or reduced rank restrictions) before additional tests on the value of parameters. We show that PV relationships entail a weak-form common feature relationship as in Hecq, Palm, and Urbain (2006) and in Athanasopoulos, Guillén, Issler and Vahid (2011) and also a polynomial serial-correlation common feature relationship as in Cubadda and Hecq (2001), which represent restrictions on dynamic models which allow several tests for the existence of PV relationships to be used. Because these relationships occur mostly with nancial data, we propose tests based on generalized method of moment (GMM) estimates, where it is straightforward to propose robust tests in the presence of heteroskedasticity. We also propose a robust Wald test developed to investigate the presence of reduced rank models. Their performance is evaluated in a Monte-Carlo exercise. Second, in the context of asset pricing, we propose applying a permanent-transitory (PT) decomposition based on Beveridge and Nelson (1981), which focus on extracting the long-run component of asset prices, a key concept in modern nancial theory as discussed in Alvarez and Jermann (2005), Hansen and Scheinkman (2009), and Nieuwerburgh, Lustig, Verdelhan (2010). Here again we can exploit the results developed in the common cycle literature to easily extract permament and transitory components under both long and also short-run restrictions. The techniques discussed herein are applied to long span annual data on long- and short-term interest rates and on price and dividend for the U.S. economy. In both applications we do not reject the existence of a common cyclical feature vector linking these two series. Extracting the long-run component shows the usefulness of our approach and highlights the presence of asset-pricing bubbles.
Resumo:
An extensive international literature has been developed regarding the risk trajectories of sex trade-involved children and youth. This literature has not, however, substantially incorporated the narratives of youths regarding their experiences. In this article, the contemporary literature on child and youth sex trade-involvement is reviewed and the findings of a qualitative analysis of the narratives of 14 youth from São Paulo, Brazil and 58 youth from Toronto, Canada are presented. Substantial similarities were found between the groups of narratives with respect to abusive and unstable home experiences, pathways into the sex trade, social exclusion, and the impacts of the sex trade on physical and mental health. Key areas of divergence included the roles of poverty and drug use in entering the sex trade. The implications of shared experiences of social exclusion and fragmented identity across differing sociocultural contexts for policy and intervention are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Monoidal logic, ML for short, which formalized the fuzzy logics of continuous t-norms and their residua, has arisen great interest, since it has been applied to fuzzy mathematics, artificial intelligence, and other areas. It is clear that fuzzy logics basically try to represent imperfect or fuzzy information aiming to model the natural human reasoning. On the other hand, in order to deal with imprecision in the computational representation of real numbers, the use of intervals have been proposed, as it can guarantee that the results of numerical computation are in a bounded interval, controlling, in this way, the numerical errors produced by successive roundings. There are several ways to connect both areas; the most usual one is to consider interval membership degrees. The algebraic counterpart of ML is ML-algebra, an interesting structure due to the fact that by adding some properties it is possible to reach different classes of residuated lattices. We propose to apply an interval constructor to ML-algebras and some of their subclasses, to verify some properties within these algebras, in addition to the analysis of the algebraic aspects of them
Resumo:
It is often necessary to run response surface designs in blocks. In this paper the analysis of data from such experiments, using polynomial regression models, is discussed. The definition and estimation of pure error in blocked designs are considered. It is recommended that pure error is estimated by assuming additive block and treatment effects, as this is more consistent with designs without blocking. The recovery of inter-block information using REML analysis is discussed, although it is shown that it has very little impact if thc design is nearly orthogonally blocked. Finally prediction from blocked designs is considered and it is shown that prediction of many quantities of interest is much simpler than prediction of the response itself.
Resumo:
Two L-amino acid oxidases (LAAOs) were identified by random sequencing of cDNA libraries from the venom glands of Bothrops moojeni (BmooLAAO) and Bothrops jararacussu (Bjussu LAAO). Phylogenetic analysis involving other SV-LAAOs showed sequence identities within the range 83-87% being closely related to those from Agkistrodon and Trimeresurus. Molecular modeling experiments indicated the FAD-binding, substrate-binding, and helical domains of Bmoo and Bjussu LAAOs. The RMS deviations obtained by the superposition of those domains and that from Calloselasma rhodostoma LAAO crystal structure confirm the high degree of structural similarity between these enzymes. Purified BjussuLAAO-I and BmooLAAO-I exhibited antiprotozoal activities which were demonstrated to be hydrogen-peroxide mediated. This is the first report on the isolation and identification of cDNAs encoding LAAOs from Bothrops venom. The findings here reported contribute to the overall structural elucidation of SV-LAAOs and will advance the understanding on their mode of action. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Let 0
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
Computer systems are used to support breast cancer diagnosis, with decisions taken from measurements carried out in regions of interest (ROIs). We show that support decisions obtained from square or rectangular ROIs can to include background regions with different behavior of healthy or diseased tissues. In this study, the background regions were identified as Partial Pixels (PP), obtained with a multilevel method of segmentation based on maximum entropy. The behaviors of healthy, diseased and partial tissues were quantified by fractal dimension and multiscale lacunarity, calculated through signatures of textures. The separability of groups was achieved using a polynomial classifier. The polynomials have powerful approximation properties as classifiers to treat characteristics linearly separable or not. This proposed method allowed quantifying the ROIs investigated and demonstrated that different behaviors are obtained, with distinctions of 90% for images obtained in the Cranio-caudal (CC) and Mediolateral Oblique (MLO) views.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using the pure spinor formalism we prove identities which relate the tree-level, one-loop and two-loop kinematic factors for massless four-point amplitudes. From these identities it follows that the complete supersymmetric one- and two-loop amplitudes are immediately known once the tree-level kinematic factor is evaluated. In particular, the two-loop equivalence with the RNS formalism (up to an overall coefficient) is obtained as a corollary.