913 resultados para Aquatic mammals
Resumo:
Mammalian birth is accompanied by profound changes in metabolic rate that can be described in terms of body size relationship (Kleiber's rule). Whereas the fetus, probably as an adaptation to the low intrauterine pO2, exhibits an "inappropriately" low, adult-like specific metabolic rate, the term neonate undergoes a rapid metabolic increase up to the level to be expected from body size. A similar, albeit slowed, "switching-on" of metabolic size allometry is found in human preterm neonates whereas animals that are normally born in a very immature state are able to retard or even suppress the postnatal metabolic increase in favor of weight gain and O2 supply. Moreover, small immature mammalian neonates exhibit a temporary oxyconforming behavior which enhances their hypoxia tolerance, yet is lost to the extent by which the size-adjusted metabolic rate is "locked" by increasing mitochondrial density. Beyond the perinatal period, there are no other deviations from metabolic size allometry among mammals except in hibernation where the temporary "switching-off" of Kleiber's rule is accompanied by a deep reduction in tissue pO2. This gives support to the hypothesis that the postnatal metabolic increase represents an "escape from oxygen" similar to the evolutionary roots of mitochondrial respiration, and that the overall increase in specific metabolic rate with decreasing size might contribute to prevent tissues from O2 toxicity.
Resumo:
BACKGROUND: The sensory drive hypothesis predicts that divergent sensory adaptation in different habitats may lead to premating isolation upon secondary contact of populations. Speciation by sensory drive has traditionally been treated as a special case of speciation as a byproduct of adaptation to divergent environments in geographically isolated populations. However, if habitats are heterogeneous, local adaptation in the sensory systems may cause the emergence of reproductively isolated species from a single unstructured population. In polychromatic fishes, visual sensitivity might become adapted to local ambient light regimes and the sensitivity might influence female preferences for male nuptial color. In this paper, we investigate the possibility of speciation by sensory drive as a byproduct of divergent visual adaptation within a single initially unstructured population. We use models based on explicit genetic mechanisms for color vision and nuptial coloration. RESULTS: We show that in simulations in which the adaptive evolution of visual pigments and color perception are explicitly modeled, sensory drive can promote speciation along a short selection gradient within a continuous habitat and population. We assumed that color perception evolves to adapt to the modal light environment that individuals experience and that females prefer to mate with males whose nuptial color they are most sensitive to. In our simulations color perception depends on the absorption spectra of an individual's visual pigments. Speciation occurred most frequently when the steepness of the environmental light gradient was intermediate and dispersal distance of offspring was relatively small. In addition, our results predict that mutations that cause large shifts in the wavelength of peak absorption promote speciation, whereas we did not observe speciation when peak absorption evolved by stepwise mutations with small effect. CONCLUSION: The results suggest that speciation can occur where environmental gradients create divergent selection on sensory modalities that are used in mate choice. Evidence for such gradients exists from several animal groups, and from freshwater and marine fishes in particular. The probability of speciation in a continuous population under such conditions may then critically depend on the genetic architecture of perceptual adaptation and female mate choice.
Resumo:
With water immersion, gravity is partly eliminated, and the water exerts a pressure on the body surface. Consequently there is a blood volume shift from the periphery to the central circulation, resulting in marked volume loading of the thorax and heart. This paper presents a selection of published literature on water immersion, balneotherapy, aqua exercises, and swimming, in patients with left ventricular dysfunction (LVD) and/or stable chronic heart failure (CHF). Based on exploratory studies, central hemodynamic and neurohumoral responses of aquatic therapies will be illustrated. Major findings are: 1. In LVD and CHF, a positive effect of therapeutic warm-water tub bathing has been observed, which is assumed to be from afterload reduction due to peripheral vasodilatation caused by the warm water. 2. In coronary patients with LVD, at low-level water cycling the heart is working more efficiently than at lowlevel cycling outside of water. 3. In patients with previous extensive myocardial infarction, upright immersion to the neck resulted in temporary pathological increases in mean pulmonary artery pressure (mPAP) and mean pulmonary capillary pressures (mPCP). 4. Additionally, during slow swimming (20-25m/min) the mPAP and/or PCP were higher than during supine cycling outside water at a 100W load. 5. In CHF patients, neck- deep immersion resulted in a decrease or no change in stroke volume. 6. Although patients are hemodynamically compromised, they usually maintain a feeling of well-being during aquatic therapy. Based on these findings, clinical indications for aquatic therapies are proposed and ideas are presented to provoke further research.
Resumo:
Heavy metal-rich copper mine tailings, called stamp sands, were dumped by mining companies directly into streams and along the Lake Superior shoreline, degrading Keweenaw Peninsula waterways. One of the largest disposal sites is near Gay, Michigan, where tailings have been moved along the shoreline by currents since mining ceased. As a result, the smallest sand particles have been washed into deeper water and are filling the interstitial spaces of Buffalo Reef, a critical lake trout spawning site. This research is the first to investigate if stamp sand is detrimental to survival and early development of eggs and larvae of lake sturgeon, lake trout, and Northern leopard frogs, and also examines if the presence of stamp sands influences substrate selection of earthworms. This study found that stamp sand had significantly larger mean particle sizes and irregular shapes compared to natural sand, and earthworms show a strong preference for natural substrate over any combination that included stamp sand. Additionally, copper analysis (Cu2+) of surface water over stamp sand and natural sand showed concentrations were significantly higher in stamp sand surface water (100 μg/L) compared to natural sand surface water (10 μg/L). Frog embryos had similar hatch success over both types of sand, but tadpoles reared over natural sand grew faster and had higher survival rates. Eggs of lake sturgeon showed similar hatch success and development over natural vs. stamp sand over 17 days, while lake trout eggs hatched earlier and developed faster when incubated over stamp sand, yet showed similar development over a 163 day period. Copper from stamp sand appears to impact amphibians more than fish species in this study. These results will help determine what impact stamp sand has on organisms found throughout the Keweenaw Peninsula which encounter the material at some point in their life history.
Resumo:
An often-cited reason for studying the process of invasion by alien species is that the understanding sought can be used to mitigate the impacts of the invaders. Here, we present an analysis of the correlates of local impacts of established alien bird and mammal species in Europe, using a recently described metric to quantify impact. Large-bodied, habitat generalist bird and mammal species that are widespread in their native range, have the greatest impacts in their alien European ranges, supporting our hypothesis that surrogates for the breadth and the amount of resources a species uses are good indicators of its impact. However, not all surrogates are equally suitable. Impacts are generally greater for mammal species giving birth to larger litters, but in contrast are greater for bird species laying smaller clutches. There is no effect of diet breadth on impacts in birds or mammals. On average, mammals have higher impacts than birds. However, the relationships between impact and several traits show common slopes for birds and mammals, and relationships between impact and body mass and latitude do not differ between birds and mammals. These results may help to anticipate which species would have large impacts if introduced, and so direct efforts to prevent such introductions.
Resumo:
Cancers of the reproductive system are among the leading causes of mortality in women in the United States. While both genetic and environmental factors have been implicated in their etiology, the extent of the contribution of environmental factors to human diseases remains controversial. To better address the role of environmental exposures in cancer etiology, there has been an increasing focus on the development of nontraditional, environmentally relevant models. Our research involves the development of one such model, Gonadal tumors have been described in the softshell clam (Mya arenaria) in Maine and the hardshell clam (Mercenaria spp.) from Florida. Prevalence of these tumors is as high as 40% in some populations in eastern Maine and 60% in Some areas along the Indian River in Florida. The average tumor prevalence in Maine and Florida is approximately 20 and 11%, respectively. An association has been suggested between the use of herbicides and the incidence of gonadal tumors in the softshell clam in Maine. The role of environmental exposures in the development of the tumors in Mercenaria in Florida is unknown, however, there is evidence that genetic factors may contribute to its etiology. Epidemiologic studies of human populations in these same areas show a higher than average mortality rate due to cancers of the reproductive system in women, including both ovarian and breast career. The relationship, if any, among these observations is unknown, Our studies on the molecular basis of this disease in clams may provide additional information on environmental exposures and their possible link to cancer in clams and other organisms, including humans.
Resumo:
Aquatic ecosystems are confronted with multiple stress factors. Current approaches to assess the risk of anthropogenic stressors to aquatic ecosystems are developed for single stressors and determine stressor effects primarily as a function of stressor properties. The cumulative impact of several stressors, however, may differ markedly from the impact of the single stressors and can result in nonlinear effects and ecological surprises. To meet the challenge of diagnosing and predicting multiple stressor impacts, assessment strategies should focus on properties of the biological receptors rather than on stressor properties. This change of paradigm is required because (i) multiple stressors affect multiple biological targets at multiple organizational levels, (ii) biological receptors differ in their sensitivities, vulnerabilities, and response dynamics to the individual stressors, and (iii) biological receptors function as networks, so that actions of stressors at disparate sites within the network can lead via indirect or cascading effects, to unexpected outcomes.
Optimizing the aquatic toxicity assessment under REACH through an integrated testing strategy (ITS).
Resumo:
To satisfy REACH requirements a high number of data on chemical of interest should be supplied to the European Chemicals Agency. To organize the various kinds of information and help the registrants to choose the best strategy to obtain the needed information limiting at the minimum the use of animal testing, integrated testing strategies (ITSs) schemes can be used. The present work deals with regulatory data requirements for assessing the hazards of chemicals to the aquatic pelagic environment. We present an ITS scheme for organizing and using the complex existing data available for aquatic toxicity assessment. An ITS to optimize the choice of the correct prediction strategy for aquatic pelagic toxicity is described. All existing information (like physico-chemical information), and all the alternative methods (like in silico, in vitro or the acute-to-chronic ratio) are considered. Moreover the weight of evidence approach to combine the available data is included.
Resumo:
Extant terrestrial biodiversity arguably is driven by the evolutionary success of angiosperm plants, but the evolutionary mechanisms and timescales of angiosperm-dependent radiations remain poorly understood. The Scarabaeoidea is a diverse lineage of predominantly plant- and dung-feeding beetles. Here, we present a phylogenetic analysis of Scarabaeoidea based on four DNA markers for a taxonomically comprehensive set of specimens and link it to recently described fossil evidence. The phylogeny strongly supports multiple origins of coprophagy, phytophagy and anthophagy. The ingroup-based fossil calibration of the tree widely confirmed a Jurassic origin of the Scarabaeoidea crown group. The crown groups of phytophagous lineages began to radiate first (Pleurostict scarabs: 108 Ma; Glaphyridae between 101 Ma), followed by the later diversification of coprophagous lineages (crown-group age Scarabaeinae: 76 Ma; Aphodiinae: 50 Ma). Pollen feeding arose even later, at maximally 62 Ma in the oldest anthophagous lineage. The clear time lag between the origins of herbivores and coprophages suggests an evolutionary path driven by the angiosperms that first favoured the herbivore fauna (mammals and insects) followed by the secondary radiation of the dung feeders. This finding makes it less likely that extant dung beetle lineages initially fed on dinosaur excrements, as often hypothesized.
Resumo:
Fish, like mammals, can be affected by neoplastic proliferations. As yet, there are only a very small number of studies reporting on the occurrence of tumours in koi carp Cyprinus carpio koi and only sporadic reports on the nature of the tumours or on risk factors associated with their development. Between 2008 and 2012, koi with abdominal swelling were examined pathologically: neoplastic lesions were diagnosed and classified histologically. We evaluated possible risk factors for the development of these internal neoplasms in koi carp in Switzerland, using an online 2-part questionnaire sent to fish keepers with koi affected by internal tumours and to fish keepers who had not previously reported any affected koi. Part 1 addressed all participants and focused on general information about koi husbandry and pond technical data; Part 2 addressed participants that had one or several case(s) of koi with internal tumour(s) between 2008 and 2012, and consisted of specific questions about affected koi. A total of 112 internal tumours were reported by the 353 koi keepers participating in the survey. Analysis of the obtained data revealed that tumour occurrence was significantly associated with the location (indoors vs. outdoors) and volume of the pond, frequency of water changes, origin of the koi, number of koi kept in a Pond and the use of certain pond disinfectant/medication products. Our results contribute to the identification of possible risk factors, which in turn could help to establish prophylactic measures in order to reduce the occurrence of internal neoplasms in koi.