971 resultados para Aquatic heteropteran


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we use compound-specific hydrogen isotope data of aquatic and terrestrial lipid biomarkers from precisely dated annually laminated sediments from Lake Meerfelder Maar (MFM) in Western Germany to reconstruct decadal resolved hydroclimatic changes during the Younger Dryas. We show that cooling at MFM begun synchronous to the onset of cooling in Greenland at 12.850 years BP. Major environmental changes at MFM however took place 170 years later as a result of substantially drier conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correct species identifications are of tremendous importance for invasion ecology, as mistakes could lead to misdirecting limited resources against harmless species or inaction against problematic ones. DNA barcoding is becoming a promising and reliable tool for species identifications, however the efficacy of such molecular taxonomy depends on gene region(s) that provide a unique sequence to differentiate among species and on availability of reference sequences in existing genetic databases. Here, we assembled a list of aquatic and terrestrial non-indigenous species (NIS) and checked two leading genetic databases for corresponding sequences of six genome regions used for DNA barcoding. The genetic databases were checked in 2010, 2012, and 2016. All four aquatic kingdoms (Animalia, Chromista, Plantae and Protozoa) were initially equally represented in the genetic databases, with 64, 65, 69, and 61% of NIS included, respectively. Sequences for terrestrial NIS were present at rates of 58 and 78% for Animalia and Plantae, respectively. Six years later, the number of sequences for aquatic NIS increased to 75, 75, 74, and 63% respectively, while those for terrestrial NIS increased to 74 and 88% respectively. Genetic databases are marginally better populated with sequences of terrestrial NIS of plants compared to aquatic NIS and terrestrial NIS of animals. The rate at which sequences are added to databases is not equal among taxa. Though some groups of NIS are not detectable at all based on available data - mostly aquatic ones - encouragingly, current availability of sequences of taxa with environmental and/or economic impact is relatively good and continues to increase with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mycelial growth of 10 Fusarium culmorum strains isolated from water of the Andarax riverbed in the provinces of Granada and Almeria in southeastern Spain was tested on potato-dextroseagar adjusted to different osmotic potentials with either KCl or NaCl (−1.50 to−144.54 bars) at 10◦C intervals ranging from15◦ to 35◦C. Fungal growth was determined by measuring colony diameter after 4 d of incubation. Mycelial growth was maximal at 25◦C. The quantity and capacity of mycelial growth of F. culmorum were similar at 15 and 25◦C, with maximal growth occurring at −13.79 bars water potential and a lack of growth at 35◦C. The effect of water potential was independent of salt composition. The general growth pattern of Fusarium culmorum growth declined at potentials below −13.79 bars. Fungal growth at 25◦C was always greater than growth at 15◦C, at all of the water potentials tested. Significant differences were observed in the response ofmycelia to water potential and temperature as main and interactive effects. The number of isolates that showed growth was increasingly inhibited as the water potential dropped, but some growth was still observable at −99.56 bars. These findings could indicate that F. culmorum strains isolated from water have a physiological mechanism that permits survival in environments with low water potential. Propagules of Fusarium culmorum are transported long distances by river water, which could explain the severity of diseases caused by F.culmorum on cereal plants irrigated with river water and its interaction under hydric stress ormoderate soil salinity. The observed differences in growth magnitude and capacity could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study assessed the uptake and toxicity of ZnO nanoparticles (NPs), ZnO bulk, and ZnCl2 salt in earthworms in spiked agricultural soils. In addition, the toxicity of aqueous extracts to Daphnia magna and Chlorella vulgaris was analyzed to determine the risk of these soils to the aquatic compartment. We then investigated the distribution of Zn in soil fractions to interpret the nature of toxicity. Neither mortality nor differences in earthworm body weight were observed compared with the control. The most sensitive end point was reproduction. ZnCl2 was notably toxic in eliminating the production of cocoons. The effects induced by ZnO-NPs and bulk ZnO on fecundity were similar and lower than those of the salt. In contrast to ZnO bulk, ZnO-NPs adversely affected fertility. The internal concentrations of Zn in earthworms in the NP group were greater than those in the salt and bulk groups, although bioconcentration factors were consistently <1. No relationship was found between toxicity and internal Zn amounts in earthworms. The results from the sequential extraction of soil showed that ZnCl2 displayed the highest availability compared with both ZnO. Zn distribution was consistent with the greatest toxicity showed by the salt but not with Zn body concentrations. The soil extracts from both ZnO-NPs and bulk ZnO did not show effects on aquatic organisms (Daphnia and algae) after short-term exposure. However, ZnCl2 extracts (total and 0.45-μm filtered) were toxic to Daphnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides and flame retardants) in aquatic plants. Analytes were extracted by ultrasound assisted-matrix solid phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation. The method was validated for different aquatic plants (Typha angustifolia, Arundo donax and Lemna minor) and a semiaquatic cultivated plant (Oryza sativa) with good recoveries at concentrations of 100 and 25 ng g-1 wet weight, ranging from 70 to 120 %, and low method detection limits (0.3 to 2.2 ng g-1 wet weight). A significant difference of the chromatographic response was observed for some compounds in neat solvent versus matrix extracts and therefore quantification was carried out using matrix-matched standards in order to overcome this matrix effect. Aquatic plants taken from rivers located at three Spanish regions were analyzed and the compounds detected were parabens, bisphenol A, benzophenone-3, cyfluthrin and cypermethrin. The levels found ranged from 6 to 25 ng g-1 wet weight except for cypermethrin that was detected at 235 ng g-1 wet weight in Oryza sativa samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environments can directly influence the chemical reactivity, transport, and ecotoxicity of their constituent ions. In many cases, Pb-contaminated soils and sediments contain the minerals anglesite (PbSO4), cerussite (PbCO3), and various lead oxides (e.g., litharge, PbO) as well as Pb2+ adsorbed to Fe and Mn (hydr)oxides. Whereas adsorbed Pb can be comparatively inert, the lead oxides, sulfates, and carbonates are all highly soluble in acidic to circumneutral environments, and soil Pb in these forms can pose a significant environmental risk. In contrast, the lead phosphates [e.g., pyromorphite, Pb5(PO4)3Cl] are much less soluble and geochemically stable over a wide pH range. Application of soluble or solid-phase phosphates (i.e., apatites) to contaminated soils and sediments induces the dissolution of the “native” Pb minerals, the desorption of Pb adsorbed by hydrous metal oxides, and the subsequent formation of pyromorphites in situ. This process results in decreases in the chemical lability and bioavailability of the Pb without its removal from the contaminated media. This and analogous approaches may be useful strategies for remediating contaminated soils and sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown the utility of delta(15)N to model trophic structure and contaminant bioaccumulation in aquatic food webs. However, cross-system comparisons in delta(15)N can be complicated by differences in delta(15)N at the base of the food chain. Such baseline variation in delta(15)N is difficult to resolve using plankton because of the large temporal variability in the delta(15)N of small organisms that have fast nitrogen turnover. Comparisons using large primary consumers, which have stable tissue isotopic signatures because of their slower nitrogen turnover, show that delta(15)N increases markedly with the human population density in the lake watershed. This shift in delta(15)N likely reflects the high delta(15)N of human sewage. Correcting for this baseline variation in delta(15)N, we report that, contrary to expectations based on previous food-web analysis, the food chains leading up to fish varied by about only one trophic level among the 40 lakes studied. Our results also suggest that the delta(15)N signatures of nitrogen at the base of the food chain will provide a useful tool in the assessment of anthropogenic nutrient inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonnative aquatic species are invasive worldwide. These species adversely affect natural aquatic ecosystems in a variety of ways and can negatively affect agriculture, recreation and industry. This study addresses identification and control of aquatic plant species of concern in Colorado State Parks. Seventeen species identified as potential threats to the parks and safe, effective chemical control methodologies were determined for each species. A matrix was developed to include the plants, appropriate chemical controls and the type of aquatic habitat where chemical use would be safe and effective. The matrix and recommendations for its use will be provided to the Colorado Division of Parks and Outdoor Recreation to develop a management plan under Section 1204 of the National Invasive Species Act.