986 resultados para Approximation properties
Resumo:
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli being responsible for >80% of all cases. Asymptomatic bacteriuria (ABU) occurs when bacteria colonize the urinary tract without causing clinical symptoms and can affect both catheterized patients (catheter-associated ABU [CA-ABU]) and noncatheterized patients. Here, we compared the virulence properties of a collection of ABU and CA-ABU nosocomial E. coli isolates in terms of antibiotic resistance, phylogenetic grouping, specific UTI-associated virulence genes, hemagglutination characteristics, and biofilm formation. CA-ABU isolates were similar to ABU isolates with regard to the majority of these characteristics; exceptions were that CA-ABU isolates had a higher prevalence of the polysaccharide capsule marker genes kpsMT II and kpsMT K1, while more ABU strains were capable of mannose-resistant hemagglutination. To examine biofilm growth in detail, we performed a global gene expression analysis with two CA-ABU strains that formed a strong biofilm and that possessed a limited adhesin repertoire. The gene expression profile of the CA-ABU strains during biofilm growth showed considerable overlap with that previously described for the prototype ABU E. coli strain, 83972. This is the first global gene expression analysis of E. coli CA-ABU strains. Overall, our data suggest that nosocomial ABU and CA-ABU E. coli isolates possess similar virulence profiles.
Resumo:
In asymptomatic bacteriuria (ABU), bacteria colonize the urinary tract without provoking symptoms. Here, we compared the virulence properties of a collection of ABU Escherichia coli strains to cystitis and pyelonephritis strains. Specific urinary tract infection (UTI)-associated virulence genes, hemagglutination characteristics, siderophore production, hemolysis, biofilm formation, and the ability of strains to adhere to and induce cytokine responses in epithelial cells were analyzed. ABU strains were phylogenetically related to strains that cause symptomatic UTI. However, the virulence properties of the ABU strains were variable and dependent on a combination of genotypic and phenotypic factors. Most ABU strains adhered poorly to epithelial cells; however, we also identified a subgroup of strongly adherent strains that were unable to stimulate an epithelial cell IL-6 cytokine response. Poor immune activation may represent one mechanism whereby ABU E. coli evade immune detection after the establishment of bacteriuria.
Resumo:
Ab-initio DFT calculations for the phonon dispersion (PD) and the Phonon Density Of States (PDOS) of the two isotopic forms (10B and 11B) of MgB2 demonstrate that use of a reduced symmetry super-lattice provides an improved approximation to the dynamical, phonon-distorted P6/mmm crystal structure. Construction of phonon frequency plots using calculated values for these isotopic forms gives linear trends with integer multiples of a base frequency that change in slope in a manner consistent with the isotope effect (IE). Spectral parameters inferred from this method are similar to that determined experimentally for the pure isotopic forms of MgB2. Comparison with AlB2 demonstrates that a coherent phonon decay down to acoustic modes is not possible for this metal. Coherent acoustic phonon decay may be an important contributor to superconductivity for MgB2.
Resumo:
Introduction: The plantar heel pad is a specialized fibroadipose tissue that attenuates and, in part, dissipates the impact energy associated with heel strike. Although near maximal deformation of the heel pad has been shown during running, in vivo measurement of the deformation and structural properties of the heel pad during walking remains largely unexplored. This study employed a fluoroscope, synchronized with a pressure platform, to obtain force–deformation data for the heel pad during walking. Methods: Dynamic lateral foot radiographs were acquired from 6 male and 10 female adults (age, 45 ± 10 yrs; height, 1.66 ± 0.10 m; and weight, 80.7 ± 10.8 kg), while walking barefoot at preferred speeds. The inferior aspect of the calcaneus was digitized and the sagittal thickness and deformation of the heel pad relative to the support surface calculated. Simultaneous measurement of the peak force beneath the heel was used to estimate the principal structural properties of the heel pad. Results: Transient loading profiles associated with walking induced rapidly changing deformation rates in the heel pad and resulted in irregular load–deformation curves. The initial stiffness (32 ± 11 N.mm-1) of the heel pad was an order of magnitude lower than its final stiffness (212 ± 125 N.mm-1) and on average, only 1.0 J of energy was dissipated by the heel pad with each step during walking. Peak deformation (10.3 mm) approached that predicted for the limit of pain tolerance (10.7 mm). Conclusion: These findings suggest the heel pad operates close to its pain threshold even at speeds encountered during barefoot walking and provides insight as to why barefoot runners may adopt ‘forefoot’ strike patterns that minimize heel loading.
Resumo:
Semiconducting properties of nanoparticle coating on liquid metal marbles can present opportunities for an additional dimension of control on these soft objects with functional surfaces in aqueous environments. We show the unique differences in the electrochemical actuation mechanisms of liquid metal marbles with n- and p-type semiconducting nanomaterial coating. A systematic study on such liquid metal marbles shows voltage dependent nanoparticle cluster formation and morphological changes of the liquid metal core during electrochemical actuations and these observations are unique to p-type nanomaterial coated liquid metal marbles.
Resumo:
As one of the transition metal oxides, niobium pentoxide (Nb2O5) offers a broad variety of properties that make it a potentially useful and highly applicable material in many different areas. In comparison to many other transition metal oxides, Nb2O5 has received relatively little attention, which presents a significant opportunity for future investigations aimed at fundamentally understanding this material and finding new and interesting applications for it. In this article, a general overview of Nb2O5 is presented which focuses on its fundamental properties, synthesis methods and recent applications, along with a discussion on future research directions relevant to this material.
Resumo:
We present a preparation procedure for small sized biocompatibly coated Ag nanoparticles with tunable surface plasmon resonances. The conditions were optimised with respect to the resonance Raman signal enhancement of heme proteins and to the preservation of the native protein structure....
Resumo:
We report on the mechanical properties of sodium titanate nanowires (Na2Ti3O7 NW) through a combination of bending experiments and theoretical analysis. Na2Ti3O7 NWs with lateral dimensions ranging from 20–700 nm were synthesized by a hydrothermal approach. A focused ion beam (FIB) was used to manipulate the selected Na2Ti3O7 NW over a hole drilled in an indium tin oxide substrate. After welding the nanowire, a series of bending tests was performed. It was observed that the Na2Ti3O7 NW exhibits a brittle behavior, and a nonlinear elastic deformation was observed before failure. By using the modified Euler–Bernoulli beam theory, such nonlinear elastic deformation is found to originate from a combination of surface effects and axial elongation (arising from the bending deformation). The effective Young's modulus of the Na2Ti3O7 NW was found to be independent of the wire length, and ranges from 21.4 GPa to 45.5 GPa, with an average value of 33 ± 7 GPa. The yield strength of the Na2Ti3O7 NW is measured at 2.7 ± 0.7 GPa.
Resumo:
In this work, three novel pyrene cored small conjugated molecules, namely 1,3,6,8-tetrakis(6-(octyloxy)naphthalene-2-yl)pyrene (PY-1), 1,3,6,8-tetrakis((E)-2-(6-(n-octyloxy)naphthalene-2-yl)vinyl)pyrene (PY-2) and 1,3,6,8-tetrakis((6-(n-octyloxy)naphthalene-2-yl)ethynyl)pyrene (PY-3) have been synthesized by Suzuki, heck and Sonogashira organometallic coupling reactions, respectively. The effects of single, double and triple bonds on their optical, electrochemical, and thermal properties are studied in detail. These are all materials fluorescent and they have been used in organic light-emitting diodes (OLEDs) and their electroluminescent properties have been studied.
Resumo:
The development of semi aromatic polyamide/organoclays nanocomposites (PANC) is reported in this communication. New polyamide (PA) was successfully synthesized through direct polycondensation reaction between bio-based diacid and aromatic diamine. PA exhibited strong UV vis absorption band at 412 nm. Its photoluminescence spectrum showed maximum band at 511 nm in the green region. The surface modification of montmorillonite was carried out through ion-exchange reaction using 1,4-bis[4-aminophenoxy]butane (APB) as a modifier. Then PANCs containing 3 and 6 wt.% of the modified montmorillonite (MMT-APB) were prepared. Flammability and thermal properties of PA and the nanocomposites were studied by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results in both air and nitrogen atmospheres indicated improving in thermal properties of PANCs compared to the neat PA. According to MCC analysis, a 31.6% reduction in pHRR value has been achieved by introducing 6 wt.% of the organoclay in PA matrix.
Resumo:
In the Bayesian framework a standard approach to model criticism is to compare some function of the observed data to a reference predictive distribution. The result of the comparison can be summarized in the form of a p-value, and it's well known that computation of some kinds of Bayesian predictive p-values can be challenging. The use of regression adjustment approximate Bayesian computation (ABC) methods is explored for this task. Two problems are considered. The first is the calibration of posterior predictive p-values so that they are uniformly distributed under some reference distribution for the data. Computation is difficult because the calibration process requires repeated approximation of the posterior for different data sets under the reference distribution. The second problem considered is approximation of distributions of prior predictive p-values for the purpose of choosing weakly informative priors in the case where the model checking statistic is expensive to compute. Here the computation is difficult because of the need to repeatedly sample from a prior predictive distribution for different values of a prior hyperparameter. In both these problems we argue that high accuracy in the computations is not required, which makes fast approximations such as regression adjustment ABC very useful. We illustrate our methods with several samples.
Resumo:
Graphene/hexagonal boron nitride (G/h-BN) heterostructure has attracted tremendous research efforts owing to its great potential for applications in nano-scale electronic devices. In such hybrid materials, tilt grain boundaries (GBs) between graphene and h-BN grains may have unique physical properties, which have not been well understood. Here we have conducted non-equilibrium molecular dynamics simulations to study the energetic and thermal properties of tilt GBs in G/h-BN heterostructures. The effect of misorientation angles of tilt GBs on both GB energy and interfacial thermal conductance are investigated.