849 resultados para Applied artificial intelligence
Resumo:
Cyber-Physical Systems and Ambient Intelligence are two of the most important and emerging paradigms of our days. The introduction of renewable sources gave origin to a completely different dimension of the distribution generation problem. On the other hand, Electricity Markets introduced a different dimension in the complexity, the economic dimension. Our goal is to study how to proceed with the Intelligent Training of Operators in Power Systems Control Centres, considering the new reality of Renewable Sources, Distributed Generation, and Electricity Markets, under the emerging paradigms of Cyber-Physical Systems and Ambient Intelligence. We propose Intelligent Tutoring Systems as the approach to deal with the intelligent training of operators in these new circumstances.
Resumo:
This paper presents a methodology to address reactive power compensation using Evolutionary Particle Swarm Optimization (EPSO) technique programmed in the MATLAB environment. The main objective is to find the best operation point minimizing power losses with reactive power compensation, subjected to all operational constraints, namely full AC power flow equations, active and reactive power generation constraints. The methodology has been tested with the IEEE 14 bus test system demonstrating the ability and effectiveness of the proposed approach to handle the reactive power compensation problem.
Resumo:
The smart grid concept is rapidly evolving in the direction of practical implementations able to bring smart grid advantages into practice. Evolution in legacy equipment and infrastructures is not sufficient to accomplish the smart grid goals as it does not consider the needs of the players operating in a complex environment which is dynamic and competitive in nature. Artificial intelligence based applications can provide solutions to these problems, supporting decentralized intelligence and decision-making. A case study illustrates the importance of Virtual Power Players (VPP) and multi-player negotiation in the context of smart grids. This case study is based on real data and aims at optimizing energy resource management, considering generation, storage and demand response.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
The main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.
Resumo:
Os sistemas fotovoltaicos produzem energia eléctrica limpa, e inesgotável na nossa escala temporal. A Agência Internacional de Energia encara a tecnologia fotovoltaica como uma das mais promissoras, esperando nas suas previsões mais optimistas, que em 2050 possa representar 20% da produção eléctrica mundial, o equivalente a 18000 TWh. No entanto, e apesar do desenvolvimento notável nas últimas décadas, a principal condicionante a uma maior proliferação destes sistemas é o ainda elevado custo, aliado ao seu fraco desempenho global. Apesar do custo e ineficiência dos módulos fotovoltaicos ter vindo a diminuir, o rendimento dos sistemas contínua dependente de factores externos sujeitos a grande variabilidade, como a temperatura e a irradiância, e às limitações tecnológicas e falta de sinergia dos seus equipamentos constituintes. Neste sentido procurou-se como objectivo na elaboração desta dissertação, avaliar o potencial de optimização dos sistemas fotovoltaicos recorrendo a técnicas de modelação e simulação. Para o efeito, em primeiro lugar foram identificados os principais factores que condicionam o desempenho destes sistemas. Em segundo lugar, e como caso prático de estudo, procedeu-se à modelação de algumas configurações de sistemas fotovoltaicos, e respectivos componentes em ambiente MatlabTM/SimulinkTM. Em seguida procedeu-se à análise das principais vantagens e desvantagens da utilização de diversas ferramentas de modelação na optimização destes sistemas, assim como da incorporação de técnicas de inteligência artificial para responder aos novos desafios que esta tecnologia enfrentará no futuro. Através deste estudo, conclui-se que a modelação é não só um instrumento útil para a optimização dos actuais sistemas PV, como será, certamente uma ferramenta imprescindível para responder aos desafios das novas aplicações desta tecnologia. Neste último ponto as técnicas de modelação com recurso a inteligência artificial (IA) terão seguramente um papel preponderante. O caso prático de modelação realizado permitiu concluir que esta é igualmente uma ferramenta útil no apoio ao ensino e investigação. Contudo, convém não esquecer que um modelo é apenas uma aproximação à realidade, devendo recorrer-se sempre ao sentido crítico na interpretação dos seus resultados.
Resumo:
In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.
Resumo:
The idea behind creating this special issue on real world applications of intelligent tutoring systems was to bring together in a single publication some of the most important examples of success in the use of ITS technology. This will serve as a reference to all researchers working in the area. It will also be an important resource for the industry, showing the maturity of ITS technology and creating an atmosphere for funding new ITS projects. Simultaneously, it will be valuable to academic groups, motivating students for new ideas of ITS and promoting new academic research work in the area.
Resumo:
This paper presents the proposal of an architecture for developing systems that interact with Ambient Intelligence (AmI) environments. This architecture has been proposed as a consequence of a methodology for the inclusion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Systems Research for Ambient Intelligence). The ISyRAmI architecture considers several modules. The first is related with the acquisition of data, information and even knowledge. This data/information knowledge deals with our AmI environment and can be acquired in different ways (from raw sensors, from the web, from experts). The second module is related with the storage, conversion, and handling of the data/information knowledge. It is understood that incorrectness, incompleteness, and uncertainty are present in the data/information/knowledge. The third module is related with the intelligent operation on the data/information/knowledge of our AmI environment. Here we include knowledge discovery systems, expert systems, planning, multi-agent systems, simulation, optimization, etc. The last module is related with the actuation in the AmI environment, by means of automation, robots, intelligent agents and users.
Resumo:
Audiometer systems provide enormous amounts of detailed TV watching data. Several relevant and interdependent factors may influence TV viewers' behavior. In this work we focus on the time factor and derive Temporal Patterns of TV watching, based on panel data. Clustering base attributes are originated from 1440 binary minute-related attributes, capturing the TV watching status (watch/not watch). Since there are around 2500 panel viewers a data reduction procedure is first performed. K-Means algorithm is used to obtain daily clusters of viewers. Weekly patterns are then derived which rely on daily patterns. The obtained solutions are tested for consistency and stability. Temporal TV watching patterns provide new insights concerning Portuguese TV viewers' behavior.
Resumo:
Mestrado em Engenharia Informática
Resumo:
One of the goals in the field of Music Information Retrieval is to obtain a measure of similarity between two musical recordings. Such a measure is at the core of automatic classification, query, and retrieval systems, which have become a necessity due to the ever increasing availability and size of musical databases. This paper proposes a method for calculating a similarity distance between two music signals. The method extracts a set of features from the audio recordings, models the features, and determines the distance between models. While further work is needed, preliminary results show that the proposed method has the potential to be used as a similarity measure for musical signals.
Resumo:
A key aspect of decision-making in a disaster response scenario is the capability to evaluate multiple and simultaneously perceived goals. Current competing approaches to build decision-making agents are either mental-state based as BDI, or founded on decision-theoretic models as MDP. The BDI chooses heuristically among several goals and the MDP searches for a policy to achieve a specific goal. In this paper we develop a preferences model to decide among multiple simultaneous goals. We propose a pattern, which follows a decision-theoretic approach, to evaluate the expected causal effects of the observable and non-observable aspects that inform each decision. We focus on yes-or-no (i.e., pursue or ignore a goal) decisions and illustrate the proposal using the RoboCupRescue simulation environment.
Resumo:
Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.