905 resultados para Apparent Inhibitor Affinity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs play specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP ribose) polymerase hyperactivation and cell death, and reduced tumor growth and cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. These data predict a novel and totally unexpected biological role for the nucleoside transporter protein hCNT1 that appears to be independent of its role as mediator of nucleoside uptake by cells, thereby suggesting a transceptor function. Cell Death & Disease Anastasis Stephanou Receiving Editor Cell Death & Disease 19th Apr 2013 Dr Perez-Torras Av/ Diagonal 643. Edif. Prevosti, Pl -1 Barcelona 08028 Spain RE: Manuscript CDDIS-13-0136R, 'CDDIS-13-0136R' Dear Dr Perez-Torras, It is a pleasure to inform you that your manuscript has been evaluated at the editorial level and has now been officially accepted for publication in Cell Death & Disease, pending you meet the following editorial requirements: 1) the list of the abbreviations is missing please include Could you send us the revised text as word file via e-mail and we will proceed and transfer the paper onto our typesetters. Please download, print, sign, and return the Licence to Publish Form using the link below. This must be returned via FAX to ++ 39 06 7259 6977 before your manuscript can be published:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Second line endocrine therapy has limited antitumour activity. Fulvestrant inhibits and downregulates the oestrogen receptor. The mitogen-activated protein kinase (MAPK) pathway is one of the major cascades involved in resistance to endocrine therapy. We assessed the efficacy and safety of fulvestrant with selumetinib, a MEK 1/2 inhibitor, in advanced stage breast cancer progressing after aromatase inhibitor (AI). PATIENTS AND METHODS: This randomised phase II trial included postmenopausal patients with endocrine-sensitive breast cancer. They were ramdomised to fulvestrant combined with selumetinib or placebo. The primary endpoint was disease control rate (DCR) in the experimental arm. ClinicalTrials.gov Indentifier: NCT01160718. RESULTS: Following the planned interim efficacy analysis, recruitment was interrupted after the inclusion of 46 patients (23 in each arm), because the selumetinib-fulvestrant arm did not reach the pre-specified DCR. DCR was 23% (95% confidence interval (CI) 8-45%) in the selumetinib arm and 50% (95% CI 27-75%) in the placebo arm. Median progression-free survival was 3.7months (95% CI 1.9-5.8) in the selumetinib arm and 5.6months (95% CI 3.4-13.6) in the placebo arm. Median time to treatment failure was 5.1 (95% CI 2.3-6.7) and 5.6 (95% CI 3.4-10.2) months, respectively. The most frequent treatment-related adverse events observed in the selumetinib-fulvestrant arm were skin disorders, fatigue, nausea/vomiting, oedema, diarrhoea, mouth disorders and muscle disorders. CONCLUSIONS: The addition of selumetinib to fulvestrant did not show improving patients' outcome and was poorly tolerated at the recommended monotherapy dose. Selumetinib may have deteriorated the efficacy of the endocrine therapy in some patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphomas arising from NK or γδ-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n=51), γδ-T-cell lymphomas (n=43) and their cell lines (n=9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of γδ-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylated protein and a growth advantage to transduced cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially inhibited by a JAK1/2 inhibitor. Molecular modelling and surface plasmon resonance measurements of the N642H mutant indicate a marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant histidine. This is associated with the prolonged persistence of the mutant phosphoSTAT5B and marked increase of binding to target sites. Our findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The members of the epidermal growth factor (EGF)/ErbB family are prime targets for cancer therapy. However, the therapeutic efficiency of the existing anti-ErbB agents is limited. Thus, identifying new molecules that inactivate the ErbB receptors through novel strategies is an important goal on cancer research. In this study we have developed a shorter form of human EGF (EGFt) with a truncated C-terminal as a novel EGFR inhibitor. EGFt was designed based on the superimposition of the three-dimensional structures of EGF and the Potato Carboxypeptidase Inhibitor (PCI), an EGFR blocker previously described by our group. The peptide was produced in E. coli with a high yield of the correctly folded peptide. EGFt showed specificity and high affinity for EGFR but induced poor EGFR homodimerization and phosphorylation. Interestingly, EGFt promoted EGFR internalization and translocation to the cell nucleus although it did not stimulate the cell growth. In addition, EGFt competed with EGFR native ligands, inhibiting the proliferation of cancer cells. These data indicate that EGFt may be a potential EGFR blocker for cancer therapy. In addition, the lack of EGFR-mediated growth-stimulatory activity makes EGFt an excellent delivery agent to target toxins to tumours over-expressing EGFR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of nuclear hormone receptor antagonists that directly inhibit the association of the receptor with its essential coactivators would allow useful manipulation of nuclear hormone receptor signaling. We previously identified 3-(dibutylamino)-1-(4-hexylphenyl)-propan-1-one (DHPPA), an aromatic β-amino ketone that inhibits coactivator recruitment to thyroid hormone receptor β (TRβ), in a high-throughput screen. Initial evidence suggested that the aromatic β-enone 1-(4-hexylphenyl)-prop-2-en-1-one (HPPE), which alkylates a specific cysteine residue on the TRβ surface, is liberated from DHPPA. Nevertheless, aspects of the mechanism and specificity of action of DHPPA remained unclear. Here, we report an x-ray structure of TRβ with the inhibitor HPPE at 2.3-Å resolution. Unreacted HPPE is located at the interface that normally mediates binding between TRβ and its coactivator. Several lines of evidence, including experiments with TRβ mutants and mass spectroscopic analysis, showed that HPPE specifically alkylates cysteine residue 298 of TRβ, which is located near the activation function-2 pocket. We propose that this covalent adduct formation proceeds through a two-step mechanism: 1) β-elimination to form HPPE; and 2) a covalent bond slowly forms between HPPE and TRβ. DHPPA represents a novel class of potent TRβ antagonist, and its crystal structure suggests new ways to design antagonists that target the assembly of nuclear hormone receptor gene-regulatory complexes and block transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Activation of the immune system affects the circadian clock. Tumor necrosis factor (TNF) and Interleukin (IL)-1β inhibit the expression of clock genes including Period (Per) genes and the PAR-bZip clock-controlled gene D-site albumin promoter-binding protein (Dbp). These effects are due to cytokine-induced interference of E-box mediated transcription of clock genes. In the present study we have assessed the two E-box binding transcriptional regulators Twist1 and Twist2 for their role in cytokine induced inhibition of clock genes. METHODS: The expression of the clock genes Per1, Per2, Per3 and of Dbp was assessed in NIH-3T3 mouse fibroblasts and the mouse hippocampal neuronal cell line HT22. Cells were treated for 4h with TNF and IL-1β. The functional role of Twist1 and Twist2 was assessed by siRNAs against the Twist genes and by overexpression of TWIST proteins. In luciferase (luc) assays NIH-3T3 cells were transfected with reporter gene constructs, which contain a 3xPer1 E-box or a Dbp E-box. Quantitative chromatin immunoprecipitation (ChIP) was performed using antibodies to TWIST1 and CLOCK, and the E-box consensus sequences of Dbp (CATGTG) and Per1 E-box (CACGTG). RESULTS: We report here that siRNA against Twist1 protects NIH-3T3 cells and HT22 cells from down-regulation of Period and Dbp by TNF and IL-1β. Overexpression of Twist1, but not of Twist2, mimics the effect of the cytokines. TNF down-regulates the activation of Per1-3xE-box-luc, the effect being prevented by siRNA against Twist1. Overexpression of Twist1, but not of Twist2, inhibits Per1-3xE-box-luc or Dbp-E-Box-luc activity. ChIP experiments show TWIST1 induction by TNF to compete with CLOCK binding to the E-box of Period genes and Dbp. CONCLUSION: Twist1 plays a pivotal role in the TNF mediated suppression of E-box dependent transactivation of Period genes and Dbp. Thereby Twist1 may provide a link between the immune system and the circadian timing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HIV protease inhibitors (HIV-PIs) are among the most potent antiviral drugs for the HIV infection. Treatment of patients with HIV-PIs has been linked with development of side effects including dyslipidemia, lipodystrophy syndrome and cardiovascular complications. Moreover, these drugs have shown anti-tumoral activity in non-infected patients but little is known about the involved molecular mechanism for these off-target effects. Here we propose that the HIV-PI Nelfinavir could block a cellular protease thus causing the observed phenotypes. We firstly focus our attention on a cellular protein, DDI2, showing sequence and structural conservation with the HIV protease. We applied cellular and in vitro approaches to produce a correctly folded recombinant protein in order to investigate the presence of a proteolytic activity. Despite the fact that we could identify two techniques that can be applied to produce a folded recombinant DDI2, no proteolytic activity has been identified in the present study. However, we could observe that decreasing the DDI2 levels recapitulated some phenotype observed in presence of HIV-PIs, including the phosphorylation of the protein translation regulators eIF2a and eEF2. As an alternative approach to identify cellular targets for HIV-PIs, we applied a proteomic screening called Slice-SILAC. We focused our attention on the defective maturation of Lamin A, a member of the nuclear lamina, induced by the block of the cellular protease Zmpste24. We demonstrated that Nelfinavir induced accumulation of Prelamin A and nuclear shape defects and in addition caused presence of cytosolic DNA, probably due to TREX1 downregulation. We showed that these phenotypes correlated with activation of the AIM2 inflammasome and IL-lß release. These findings suggest that DDI2 and Zmpste24 are direct or indirect cellular targets for the HIV-PIs and indicate a possible role for these proteins in promoting off-target effects and anti¬tumoral activity observed in HIV-PI treated patients. -- Les inhibiteurs de la protéase du VIH (IP-VIH) sont parmi les médicaments antiviraux les plus efficaces pour l'infection par le VIH. Le traitement des patients avec les IP-VIH cause des effets secondaires comprenant la dyslipidémie, le syndrome de lipodystrophie et les complications cardio-vasculaires. De plus, ces médicaments ont montré une activité anti-tumorale chez les patients non infectés, toutefois le mécanisme moléculaire impliqué dans ces effets hors-cible reste inconnu. Nous proposons que l'IP-VIH Nelfinavir puisse bloquer une protéase cellulaire provoquant les phénotypes observés. De ce fait, nous avons concentré notre attention sur une protéine cellulaire, DDI2, qui possède une séquence et une structure proche de celle de la protéase du VIH. Nous avons appliqué des approches cellulaire et in vitro pour produire une protéine recombinante correctement repliée afin d'étudier son activité protéolytique. Malgré le fait que nous avons pu identifier deux techniques qui peuvent être appliquées pour produire une protéine DDI2 recombinante correctement repliée, aucune activité protéolytique n'a été identifiée dans la présente étude. De plus, nous avons pu observer que la réduction de DDI2 récapitule les phénotypes observé avec le IP-VIH, y compris les phosphorylations de eIF2a et eEF2, impliquées dans la régulation de la traduction protéique. Une approche alternative, appelée Slice-SILAC, a été utilisée afin d'identifier de nouvelles cibles cellulaires du Nelfinavir. Nous avons concentré notre attention sur la maturation défectueuse de la Lamine A, un membre de la lamine nucléaire, induite par l'inhibition de la protéase cellulaire Zmpste24. Nous avons démontré que le Nelfinavir induit une accumulation de Prélamine A déformant la membrane nucléaire et la présence d'ADN cytosolique, probablement en raison de la régulation négative de TREX1. Nous avons montré que ces phénotypes causent l'activation de l'inflammasome AIM2 et la sécrétion d'IL-lß. Ces résultats suggèrent que DDI2 et Zmpste24 sont des cibles cellulaires pour les IP-VIH et indiquent un possible rôle pour ces protéines dans l'apparition d'effets secondaires ainsi que dans l'activité anti-tumorale observée chez les patients traités avec les IP-VIH.