903 resultados para Antennas and Propagation
Resumo:
Presented are the design and results of a reconfigurable UWB filtenna with sharp dual bandnotch at WiMAX 3.5 GHz and WLAN 5.8 GHz bands. The filtenna is formed by placing three loop resonators in an UWB antenna. The resonators are fitted with Graphene based switches which introduce reconfigurability. The filtenna was simulated electromagnetically and with Graphene based switches in switches OFF and switches ON states. Presented results show a passband from 2.81–12.27 GHz in OFF state and ON state results in sharp dual bandnotch within the passband at 3.45 and 5.95 GHz at a return loss of 2–2.5 dB. The gain and efficiency in both states has also been given and is reduced in ON state at the dual bandnotch. The radiation patterns in E- and H-planes are stable.
Resumo:
This paper presents the layout and results of a compact inkjet-printed filtenna operating at the S-band, ISM and UWB frequencies. The filtenna has a wide passband and, alongside, rejects WiMAX 3.5 GHz, WLAN 5.8 GHz and ITU service 8.2 GHz bands. The filtenna is simulated, printed using silver nanoparticle ink on flexible Kapton substrate and measured. Obtained simulation and measurement results agree well with each other. Measured return loss of the filtenna is more than 10 dB for 1.6–10.85 GHz and triple bandnotch, measuring at an average of 1.87 dB, are present at the unwanted bands. Radiation patterns, as well as the gain and efficiency of the filtenna have also been presented; with the average values being 3.4 dBi and 90 % respectively for the passband and averaging at −1.0 dBi and 22 % respectively for the three rejected bands.
Resumo:
A new wideband transition between substrate integrated waveguide (SIW) and rectangular waveguide (RWG) that resembles a right angle waveguide E-bend at Ku/K band is presented. The transition has removable but stable mounting, requires only PCB fabrication and has adaptable quality and bandwidth characteristics depending on the number of substrate layers used.
Resumo:
It is shown that the direction-of-arrival (DoA) information carried by an incident electromagnetic (EM) wave can be encoded into the evanescent near field of an electrically small resonance antenna array with a spatial rate higher than that of the incident field oscillation rate in free space. Phase conjugation of the received signal leads to the retrodirection of the near field in the antenna array environment, which in turn generates a retrodirected far-field beam toward the original DoA. This EM phenomenon enables electrically small retrodirective antenna arrays with superdirective, angular super-resolution, auto-pointing properties for an arbitrary DoA. A theoretical explanation of the phenomenon based on first principal observations is given and full-wave simulations demonstrate a realizability route for the proposed retrodirective terminal that is comprised of resonance dipole antenna elements. Specifically, it is shown that a three-element disk-loaded retrodirective dipole array with 0.15\lambda spacings can achieve a 3.4-dBi maximal gain, 3-dBi front-to-back ratio, and 13% return loss fractional bandwidth (at the 10-dB level). Then, it is demonstrated that the radiation gain of a three-element array can be improved to approximately 6 dBi at the expense of the return loss fractional bandwidth reduction (2%).
Resumo:
A novel retrodirective array (RDA) architecture is proposed which utilises a special case spectral signature embedded within the data payload as pilot signals. With the help of a pair of phase-locked-loop (PLL) based phase conjugators (PCs) the RDA’s response to other unwanted and/or unfriendly interrogating signals can be disabled, leading to enhanced secrecy performance directly in the wireless physical layer. The effectiveness of the proposed RDA system is experimentally demonstrated.
Resumo:
Design aspects of a novel beam-reconfigurable pla-nar series-fed array are addressed to achieve beam steering with frequency tunability over a relatively broad bandwidth. The design is possible thanks to the use of the complementary strip-slot, which is an innovative broadly matched microstrip radiator, and the careful selection of the phase shifter parameters.
Resumo:
A tunable decoupling and matching network (DMN) for a closely spaced two-element antenna array is presented. The DMN achieves perfect matching for the eigenmodes of the array and thus simultaneously isolates and matches the system ports while keeping the circuit small. Arrays of closely spaced wire and microstrip monopole pairs are used to demonstrate the proposed DMN. It is found that monopoles with different lengths can be used for the design frequency by using this DMN, which increases the design flexibility. This property also enables frequency tuning using the DMN only without having to change the length of the antennas. The proposed DMN uses only one varactor to achieve a tuning range of 18.8% with both return loss and isolation better than 10-dB when the spacing between the antenna is 0.05λ. When the spacing increases to 0.1λ, the simulated tuning range is more than 60%.
Resumo:
Includes bibliographical references (76-77)
Resumo:
Constant development of new wireless standards increases the demand for more radiating elements in compact end-user platforms. A decrease in antenna separation gives rise to increased antenna coupling, resulting in a reduction of the signal-to-interference-plus-noise-ratio (SINR) between transmitter and receiver. This paper proposes a decoupling network which provides dual band port isolation for a pair of distinct antennas. A prototype has been fabricated to verify the theory.
Resumo:
This paper is on the design and performance analysis of practical distributed space-time codes for wireless relay networks with multiple antennas terminals. The amplify-andforward scheme is used in a way that each relay transmits a scaled version of the linear combination of the received symbols. We propose distributed generalized quasi-orthogonal space-time codes which are distributed among the source antennas and relays, and valid for any number of relays. Assuming M-PSK and M-QAM signals, we derive a formula for the symbol error probability of the investigated scheme over Rayleigh fading channels. For sufficiently large SNR, this paper derives closed-form average SER expression. The simplicity of the asymptotic results provides valuable insights into the performance of cooperative networks and suggests means of optimizing them. Our analytical results have been confirmed by simulation results, using full-rate full-diversity distributed codes.
Resumo:
GPR is widely used for ballast fouling identification, however, there are no robust guidelines to find the degree and type of fouling quantitatively. In this study, GPR studies were carried out on model and actual railway tracks using three ground coupled antennas and considering three fouling materials. Three ground coupled antennas viz., 100 MHz, 500 MHz and 800 MHz antennas were used for the initial survey and it was found that the 800 MHz ground coupled antenna is an optimum one to get quality results. Three major fouling materials viz., screened/broken ballast, coal and iron ore were used to construct prototype model sections, which were 1/2 of the actual Indian broad-gauge railway track. A separate model section has been created for each degree and type of fouling and GPR surveys were carried out. GPR study shows that increasing the fouling content results in a decrease in the Electromagnetic Wave (EMW) velocity and an increase in the dielectric constant. EMW velocity of ballast fouled with screened ballast was found to be more than coal fouled ballast and iron ore fouled ballast at any degree of fouling and EMW velocity of iron ore fouled ballast was found to be less than coal and screen ballast fouled ballast. Dielectric constant of iron ore fouled ballast was found to be higher than coal and screen ballast fouled ballast for all degrees of fouling. Average slope of the trend line of screen ballast fouled section is low (25.6 degrees), coal fouled ballast is medium (27.8 degrees) and iron ore fouled ballast is high (47.6 degrees). (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Granular crystals are compact periodic assemblies of elastic particles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.
Resumo:
One of the major challenges in high-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of nonuniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 38 dB in sound power level due to the nonuniform inflow, far-field noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be two blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in nonuniform flow showed that the effects of nonuniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that nonlinear, coupled aerodynamic and aero-acoustic computations, such as those presented in this paper, are necessary to assess the propagation through nonuniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. © 2013 American Society of Mechanical Engineers.
Resumo:
One of the major challenges in hig4h-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of non-uniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 45 dB in sound power level due to the non-uniform inflow, farfield noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be 2 blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in non-uniform flow showed that the effects of non-uniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that non-linear, coupled aerodynamic and aeroacoustic computations, such as those presented in this paper, are necessary to assess the propagation through non-uniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. Copyright © 2011 by ASME.
Resumo:
This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area and hallway. Overall, the Nakagami-m cdf best described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway.