959 resultados para Anisotropic Triangular Lattice
On the multivariate Huesler-Reiss distribution attracting the maxima of elliptical triangular arrays
Resumo:
The purpose of this work was to study and quantify the differences in dose distributions computed with some of the newest dose calculation algorithms available in commercial planning systems. The study was done for clinical cases originally calculated with pencil beam convolution (PBC) where large density inhomogeneities were present. Three other dose algorithms were used: a pencil beam like algorithm, the anisotropic analytic algorithm (AAA), a convolution superposition algorithm, collapsed cone convolution (CCC), and a Monte Carlo program, voxel Monte Carlo (VMC++). The dose calculation algorithms were compared under static field irradiations at 6 MV and 15 MV using multileaf collimators and hard wedges where necessary. Five clinical cases were studied: three lung and two breast cases. We found that, in terms of accuracy, the CCC algorithm performed better overall than AAA compared to VMC++, but AAA remains an attractive option for routine use in the clinic due to its short computation times. Dose differences between the different algorithms and VMC++ for the median value of the planning target volume (PTV) were typically 0.4% (range: 0.0 to 1.4%) in the lung and -1.3% (range: -2.1 to -0.6%) in the breast for the few cases we analysed. As expected, PTV coverage and dose homogeneity turned out to be more critical in the lung than in the breast cases with respect to the accuracy of the dose calculation. This was observed in the dose volume histograms obtained from the Monte Carlo simulations.
Resumo:
This technical report discusses the application of Lattice Boltzmann Method (LBM) in the fluid flow simulation through porous filter-wall of disordered media. The diesel particulate filter (DPF) is an example of disordered media. DPF is developed as a cutting edge technology to reduce harmful particulate matter in the engine exhaust. Porous filter-wall of DPF traps these soot particles in the after-treatment of the exhaust gas. To examine the phenomena inside the DPF, researchers are looking forward to use the Lattice Boltzmann Method as a promising alternative simulation tool. The lattice Boltzmann method is comparatively a newer numerical scheme and can be used to simulate fluid flow for single-component single-phase, single-component multi-phase. It is also an excellent method for modelling flow through disordered media. The current work focuses on a single-phase fluid flow simulation inside the porous micro-structure using LBM. Firstly, the theory concerning the development of LBM is discussed. LBM evolution is always related to Lattice gas Cellular Automata (LGCA), but it is also shown that this method is a special discretized form of the continuous Boltzmann equation. Since all the simulations are conducted in two-dimensions, the equations developed are in reference with D2Q9 (two-dimensional 9-velocity) model. The artificially created porous micro-structure is used in this study. The flow simulations are conducted by considering air and CO2 gas as fluids. The numerical model used in this study is explained with a flowchart and the coding steps. The numerical code is constructed in MATLAB. Different types of boundary conditions and their importance is discussed separately. Also the equations specific to boundary conditions are derived. The pressure and velocity contours over the porous domain are studied and recorded. The results are compared with the published work. The permeability values obtained in this study can be fitted to the relation proposed by Nabovati [8], and the results are in excellent agreement within porosity range of 0.4 to 0.8.
Resumo:
This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.
Resumo:
Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations.