482 resultados para Analytes
Resumo:
This dissertation utilized electrospray ion mobility mass spectrometry (ESI-IMS-MS) to develop methods necessary for the separation of chiral compounds of forensic interest. The compounds separated included ephedrines and pseudoephedrines, that occur as impurities in confiscated amphetamine type substances (ATS) in an effort to determine the origin of these substances. The ESI-IMS-MS technique proved to be faster and more cost effective than traditional chromatographic methods currently used to conduct chiral separations such as gas and liquid chromatography. Both mass spectrometric and computational analysis revealed the separation mechanism of these chiral interactions allowing for further development to separate other chiral compounds by IMS. Successful separation of chiral compounds was achieved utilizing a variety of modifiers injected into the IMS drift tube. It was found that the modifiers themselves did not need to be chiral in nature and that achiral modifiers were sufficient in performing the required separations. The ESI-IMS-MS technique was also used to detect thermally labile compounds which are commonly found in explosive substances. The methods developed provided mass spectrometric identification of the type of ionic species being detected from explosive analytes as well as the appropriate solvent that enhances detection of these analytes in either the negative or positive ion mode. An application of the developed technique was applied to the analysis of a variety of low explosive smokeless powder samples. It was found that the developed ESI-IMS-MS technique not only detected the components of the smokeless powders, but also provided data that allowed the classification of the analyzed smokeless powders by manufacturer or make. ^
Resumo:
Despite the ongoing "war on drugs" the seizure rates for phenethylamines and their analogues have been steadily increasing over the years. The illicit manufacture of these compounds has become big business all over the world making it all the more attractive to the inexperienced "cook". However, as a result, the samples produced are more susceptible to contamination with reactionary byproducts and leftover reagents. These impurities are useful in the analysis of seized drugs as their identities can help to determine the synthetic pathway used to make these drugs and thus, the provenance of these analytes. In the present work two fluorescent dyes, 4-fluoro-7-nitrobenzofurazan and 5-(4,6-dichlorotriazinyl)aminofluorescein, were used to label several phenethylamine analogues for electrophoretic separation with laser-induced fluorescence detection. The large scale to which law enforcement is encountering these compounds has the potential to create a tremendous backlog. In order to combat this, a rapid, sensitive method capable of full automation is required. Through the utilization of the inline derivatization method developed whereby analytes are labeled within the capillary efficiently in a minimum span of time, this can be achieved. The derivatization and separation parameters were optimized on the basis of a variety of experimentally determined factors in order to give highly resolved peaks in the fluorescence spectrum with limits of detection in the low µg/mL range.
Resumo:
The growing need for fast sampling of explosives in high throughput areas has increased the demand for improved technology for the trace detection of illicit compounds. Detection of the volatiles associated with the presence of the illicit compounds offer a different approach for sensitive trace detection of these compounds without increasing the false positive alarm rate. This study evaluated the performance of non-contact sampling and detection systems using statistical analysis through the construction of Receiver Operating Characteristic (ROC) curves in real-world scenarios for the detection of volatiles in the headspace of smokeless powder, used as the model system for generalizing explosives detection. A novel sorbent coated disk coined planar solid phase microextraction (PSPME) was previously used for rapid, non-contact sampling of the headspace containers. The limits of detection for the PSPME coupled to IMS detection was determined to be 0.5-24 ng for vapor sampling of volatile chemical compounds associated with illicit compounds and demonstrated an extraction efficiency of three times greater than other commercially available substrates, retaining >50% of the analyte after 30 minutes sampling of an analyte spike in comparison to a non-detect for the unmodified filters. Both static and dynamic PSPME sampling was used coupled with two ion mobility spectrometer (IMS) detection systems in which 10-500 mg quantities of smokeless powders were detected within 5-10 minutes of static sampling and 1 minute of dynamic sampling time in 1-45 L closed systems, resulting in faster sampling and analysis times in comparison to conventional solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Similar real-world scenarios were sampled in low and high clutter environments with zero false positive rates. Excellent PSPME-IMS detection of the volatile analytes were visualized from the ROC curves, resulting with areas under the curves (AUC) of 0.85-1.0 and 0.81-1.0 for portable and bench-top IMS systems, respectively. Construction of ROC curves were also developed for SPME-GC-MS resulting with AUC of 0.95-1.0, comparable with PSPME-IMS detection. The PSPME-IMS technique provides less false positive results for non-contact vapor sampling, cutting the cost and providing an effective sampling and detection needed in high-throughput scenarios, resulting in similar performance in comparison to well-established techniques with the added advantage of fast detection in the field.
Resumo:
Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. ^ Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. ^ Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. ^ It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. ^ Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.^
Resumo:
Passive samplers are not only a versatile tool to integrate environmental concentrations of pollutants, but also to avoid the use of live sentinel organisms for environmental monitoring. This study introduced the use of magnetic silicone polymer composites (Fe-PDMS) as passive sampling media to pre-concentrate a wide range of analytes from environmental settings. The composite samplers were assessed for their accumulation properties by performing lab experiments with two model herbicides (Atrazine and Irgarol 1051) and evaluated for their uptake properties from environmental settings (waters and sediments). The Fe-PDMS composites showed good accumulation of herbicides and pesticides from both freshwater and saltwater settings and the accumulation mechanism was positively correlated with the log Kow value of individual analytes. Results from the studies show that these composites could be easily used for a wide number of applications such as monitoring, cleanup, and/or bioaccumulation modeling, and as a non-intrusive and nondestructive monitoring tool for environmental forensic purposes.
Resumo:
Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs. In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug. Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.
Resumo:
Smokeless powder additives are usually detected by their extraction from post-blast residues or unburned powder particles followed by analysis using chromatographic techniques. This work presents the first comprehensive study of the detection of the volatile and semi-volatile additives of smokeless powders using solid phase microextraction (SPME) as a sampling and pre-concentration technique. Seventy smokeless powders were studied using laboratory based chromatography techniques and a field deployable ion mobility spectrometer (IMS). The detection of diphenylamine, ethyl and methyl centralite, 2,4-dinitrotoluene, diethyl and dibutyl phthalate by IMS to associate the presence of these compounds to smokeless powders is also reported for the first time. A previously reported SPME-IMS analytical approach facilitates rapid sub-nanogram detection of the vapor phase components of smokeless powders. A mass calibration procedure for the analytical techniques used in this study was developed. Precise and accurate mass delivery of analytes in picoliter volumes was achieved using a drop-on-demand inkjet printing method. Absolute mass detection limits determined using this method for the various analytes of interest ranged between 0.03 - 0.8 ng for the GC-MS and between 0.03 - 2 ng for the IMS. Mass response graphs generated for different detection techniques help in the determination of mass extracted from the headspace of each smokeless powder. The analyte mass present in the vapor phase was sufficient for a SPME fiber to extract most analytes at amounts above the detection limits of both chromatographic techniques and the ion mobility spectrometer. Analysis of the large number of smokeless powders revealed that diphenylamine was present in the headspace of 96% of the powders. Ethyl centralite was detected in 47% of the powders and 8% of the powders had methyl centralite available for detection from the headspace sampling of the powders by SPME. Nitroglycerin was the dominant peak present in the headspace of the double-based powders. 2,4-dinitrotoluene which is another important headspace component was detected in 44% of the powders. The powders therefore have more than one headspace component and the detection of a combination of these compounds is achievable by SPME-IMS leading to an association to the presence of smokeless powders.
Resumo:
A comprehensive forensic investigation of sensitive ecosystems in the Everglades Area is presented. Assessing the background levels of contamination in these ecosystems represents a vital resource to build up forensic evidence required to enforce future environmental crimes within the studied areas. This investigation presents the development and validation of a fractionation and isolation method for two families of herbicides commonly applied in the vicinity of the study area, including phenoxy acids like 2,4-D, MCPA, and silvex; as well as the most common triazine-based herbicides like atrazine, prometyne, simazine and related metabolites like DIA and DEA. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used to isolate the analytes from abiotic matrices containing large amounts of organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-), and Chemical Ionization in the positive mode (APCI+) were used to perform the characterization of the herbicides of interest.
Resumo:
A comprehensive investigation of sensitive ecosystems in South Florida with the main goal of determining the identity, spatial distribution, and sources of both organic biocides and trace elements in different environmental compartments is reported. This study presents the development and validation of a fractionation and isolation method of twelve polar acidic herbicides commonly applied in the vicinity of the study areas, including e.g. 2,4-D, MCPA, dichlorprop, mecroprop, picloram in surface water. Solid phase extraction (SPE) was used to isolate the analytes from abiotic matrices containing large amounts of dissolved organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-) in a Quadrupole Ion Trap mass spectrometer was used to perform the characterization of the herbicides of interest. The application of Laser Ablation-ICP-MS methodology in the analysis of soils and sediments is reported in this study. The analytical performance of the method was evaluated on certified standards and real soil and sediment samples. Residential soils were analyzed to evaluate feasibility of using the powerful technique as a routine and rapid method to monitor potential contaminated sites. Forty eight sediments were also collected from semi pristine areas in South Florida to conduct screening of baseline levels of bioavailable elements in support of risk evaluation. The LA-ICP-MS data were used to perform a statistical evaluation of the elemental composition as a tool for environmental forensics. A LA-ICP-MS protocol was also developed and optimized for the elemental analysis of a wide range of elements in polymeric filters containing atmospheric dust. A quantitative strategy based on internal and external standards allowed for a rapid determination of airborne trace elements in filters containing both contemporary African dust and local dust emissions. These distributions were used to qualitative and quantitative assess differences of composition and to establish provenance and fluxes to protected regional ecosystems such as coral reefs and national parks.
Resumo:
Produced water is a major problem associated with the crude oil extraction activity. The monitoring of the levels of metals in the waste is constant and requires the use of sensitive analytical techniques. However, the determination of trace elements can often require a pre-concentration step. The objective of this study was to develop a simple and rapid analytical method for the extraction and pre-concentration based on extraction phenomenon cloud point for the determination of Cd, Pb and Tl in produced water samples by spectrometry of high resolution Absorption source continues and atomization graphite furnace. The Box Behnken design was used to obtain the optimal condition of extraction of analytes. The factors were evaluated: concentration of complexing agent (o,o-dietilditilfosfato ammonium, DDTP), the concentration of hydrochloric acid and concentration of surfactant (Triton X -114). The optimal condition obtained through extraction was: 0,6% m v-1 DDTP, HCl 0,3 mol L-1 and 0,2% m v-1 of Triton X - 114 for Pb; 0,7% m v-1 DDTP, HCl 0,8 mol L-1 and 0,2% m v-1 Triton X-114 for Cd. For Tl was evidenced that best extraction condition occurs with no DDTP, the extraction conditions were HCl 1,0 mol L-1 e 1,0% m v-1 de Triton X - 114. The limits of detection for the proposed method were 0,005 µg L-1 , 0,03 µg L-1 and 0,09 µg L-1 to Cd, Pb and Tl, Respectively. Enrichment factors Were greater than 10 times. The method was applied to the water produced in the Potiguar basin, and addition and recovery tests were performed, and values were between 81% and 120%. The precision was expressed with relative standard deviation (RSD) is less than 5%
Resumo:
The determination and monitoring of metallic contaminants in water is a task that must be continuous, leading to the importance of the development, modification and optimization of analytical methodologies capab le of determining the various metal contaminants in natural environments, because, in many cases, the ava ilable instrumentation does not provide enough sensibility for the determination of trace values . In this study, a method of extraction and pre- concentration using a microemulsion system with in the Winsor II equilibrium was tested and optimized for the determination of Co, Cd, P b, Tl, Cu and Ni through the technique of high- resolution atomic absorption spectrometry using a continuum source (HR-CS AAS). The optimization of the temperature program for the graphite furnace (HR-CS AAS GF) was performed through the pyrolysis and atomization curves for the analytes Cd, Pb, Co and Tl with and without the use of different chemical modifiers. Cu and Ni we re analyzed by flame atomization (HR-CS F AAS) after pre-concentr ation, having the sample introduction system optimized for the realization of discrete sampling. Salinity and pH levels were also analyzed as influencing factors in the efficiency of the extraction. As final numbers, 6 g L -1 of Na (as NaCl) and 1% of HNO 3 (v/v) were defined. For the determination of the optimum extraction point, a centroid-simplex statistical plan was a pplied, having chosen as the optimum points of extraction for all of the analytes, the follo wing proportions: 70% aqueous phase, 10% oil phase and 20% co-surfactant/surfactant (C/S = 4). After extraction, the metals were determined and the merit figures obtained for the proposed method were: LOD 0,09, 0,01, 0,06, 0,05, 0,6 and 1,5 μg L -1 for Pb, Cd, Tl, Co, Cu and Ni, re spectively. Line ar ranges of ,1- 2,0 μg L -1 for Pb, 0,01-2,0 μg L -1 for Cd, 1,0 - 20 μg L -1 for Tl, 0,1-5,0 μg L -1 for Co, 2-200 μg L -1 and for Cu e Ni 5-200 μg L -1 were obtained. The enrichment factors obtained ranged between 6 and 19. Recovery testing with the certified sample show ed recovery values (n = 3, certified values) after extraction of 105 and 101, 100 and 104% for Pb, Cd, Cu and Ni respectively. Samples of sweet waters of lake Jiqui, saline water from Potengi river and water produced from the oil industry (PETROBRAS) were spiked and the recovery (n = 3) for the analytes were between 80 and 112% confirming th at the proposed method can be used in the extraction. The proposed method enabled the sepa ration of metals from complex matrices, and with good pre-concentration factor, consistent with the MPV (allowed limits) compared to CONAMA Resolution No. 357/2005 which regulat es the quality of fresh surface water, brackish and saline water in Brazil.
Resumo:
Produced water is a by-product of offshore oil and gas production, and is released in large volumes when platforms are actively processing crude oil. Some pollutants are not typically removed by conventional oil/water separation methods and are discharged with produced water. Oil and grease can be found dispersed in produced water in the form of tiny droplets, and polycyclic aromatic hydrocarbons (PAHs) are commonly found dissolved in produced water. Both can have acute and chronic toxic effects in marine environments even at low exposure levels. The analysis of the dissolved and dispersed phases are a priority, but effort is required to meet the necessary detection limits. There are several methods for the analysis of produced water for dispersed oil and dissolved PAHs, all of which have advantages and disadvantages. In this work, EPA Method 1664 and APHA Method 5520 C for the determination of oil and grease will be examined and compared. For the detection of PAHs, EPA Method 525 and PAH MIPs will be compared, and results evaluated. APHA Method 5520 C Partition-Infrared Method is a liquid-liquid extraction procedure with IR determination of oil and grease. For analysis on spiked samples of artificial seawater, extraction efficiency ranged from 85 – 97%. Linearity was achieved in the range of 5 – 500 mg/L. This is a single-wavelength method and is unsuitable for quantification of aromatics and other compounds that lack sp³-hybridized carbon atoms. EPA Method 1664 is the liquid-liquid extraction of oil and grease from water samples followed by gravimetric determination. When distilled water spiked with reference oil was extracted by this procedure, extraction efficiency ranged from 28.4 – 86.2%, and %RSD ranged from 7.68 – 38.0%. EPA Method 525 uses solid phase extraction with analysis by GC-MS, and was performed on distilled water and water from St. John’s Harbour, all spiked with naphthalene, fluorene, phenanthrene, and pyrene. The limits of detection in harbour water were 0.144, 3.82, 0.119, and 0.153 g/L respectively. Linearity was obtained in the range of 0.5-10 g/L, and %RSD ranged from 0.36% (fluorene) to 46% (pyrene). Molecularly imprinted polymers (MIPs) are sorbent materials made selective by polymerizing functional monomers and crosslinkers in the presence of a template molecule, usually the analytes of interest or related compounds. They can adsorb and concentrate PAHs from aqueous environments and are combined with methods of analysis including GC-MS, LC-UV-Vis, and desorption electrospray ionization (DESI)- MS. This work examines MIP-based methods as well as those methods previously mentioned which are currently used by the oil and gas industry and government environmental agencies. MIPs are shown to give results consistent with other methods, and are a low-cost alternative improving ease, throughput, and sensitivity. PAH MIPs were used to determine naphthalene spiked into ASTM artificial seawater, as well as produced water from an offshore oil and gas operation. Linearity was achieved in the range studied (0.5 – 5 mg/L) for both matrices, with R² = 0.936 for seawater and R² = 0.819 for produced water. The %RSD for seawater ranged from 6.58 – 50.5% and for produced water, from 8.19 – 79.6%.
Resumo:
In this work, desorption/ionization mass spectrometry was employed for the analysis of sugars and small platform chemicals that are common intermediates in biomass transformation reactions. Specifically, matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) mass spectrometric techniques were employed as alternatives to traditional chromatographic methods. Ionic liquid matrices (ILMs) were designed based on traditional solid MALDI matrices (2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA)) and 1,3-dialkylimidazolium ionic liquids ([BMIM]Cl, [EMIM]Cl, and [EMIM]OAc) that have been employed as reaction media for biomass transformation reactions such as the conversion of carbohydrates to valuable platform chemicals. Although two new ILMs were synthesized ([EMIM][DHB] and [EMIM][CHCA] from [EMIM]OAc), chloride-containing ILs did not react with matrices and resulted in mixtures of IL and matrix in solution. Compared to the parent solid matrices, much less matrix interference was observed in the low mass region of the mass spectrum (< 500 Da) using each of the IL-matrices. Furthermore, the formation of a true ILM (i.e. a new ion pair) does not appear to be necessary for analyte ionization. MALDI sample preparation techniques were optimized based on the compatibility with analyte, IL and matrix. ILMs and IL-matrix mixtures of DHB allowed for qualitative analysis of glucose, fructose, sucrose and N-acetyl-D-glucosamine. Analogous CHCA-containing ILMs did not result in appreciable analyte signals under similar conditions. Small platform compounds such as 5-hydroxymethylfurfural (HMF) and levulinic acid were not detected by direct analysis using MALDI-MS. Furthermore, sugar analyte signals were only detected at relatively high matrix:IL:analyte ratios (1:1:1) due to significant matrix and analyte suppression by the IL ions. Therefore, chemical modification of analytes with glycidyltrimethylammonium chloride (GTMA) was employed to extend this method to quantitative applications. Derivatization was accomplished in aqueous IL solutions with fair reaction efficiencies (36.9 – 48.4 % glucose conversion). Calibration curves of derivatized glucose-GTMA yielded good linearity in all solvent systems tested, with decreased % RSDs of analyte ion signals in IL solutions as compared to purely aqueous systems (1.2 – 7.2 % and 4.2 – 8.7 %, respectively). Derivatization resulted in a substantial increase in sensitivity for MALDI-MS analyses: glucose was reliably detected at IL:analyte ratios of 100:1 (as compared to 1:1 prior to derivatization). Screening of all test analytes resulted in appreciable analyte signals in MALDI-MS spectra, including both HMF and levulinic acid. Using appropriate internal standards, calibration curves were constructed and this method was employed for monitoring a model dehydration reaction of fructose to HMF in [BMIM]Cl. Calibration curves showed wide dynamic ranges (LOD – 100 ng fructose/μg [BMIM]Cl, LOD – 75 ng HMF/μg [BMIM]Cl) with correlation coefficients of 0.9973 (fructose) and 0.9931 (HMF). LODs were estimated from the calibration data to be 7.2 ng fructose/μg [BMIM]Cl and 7.5 ng HMF/μg [BMIM]Cl, however relatively high S/N ratios at these concentrations indicate that these values are likely overestimated. Application of this method allowed for the rapid acquisition of quantitative data without the need for prior separation of analyte and IL. Finally, small molecule platform chemicals HMF and levulinic acid were qualitatively analyzed by DESI-MS. Both HMF and levulinic acid were easily ionized and the corresponding molecular ions were easily detected in the presence of 10 – 100 times IL, without the need for chemical modification prior to analysis. DESI-MS analysis of ILs in positive and negative ion modes resulted in few ions in the low mass region, showing great potential for the analysis of small molecules in IL media.
Resumo:
Transition metals such as iron and copper are valued in biology for their redox activities because they are able to access various oxidation states. However, these transition metals are also implicated in a number of human disease states and play a role in bacterial infections. The ability to manipulate and monitor metal ions has vast implications on the fields of biology and human health. As such, the research described here covers two related goals: to manipulate metals in specific biological circumstances and to visualize this disturbance in cellular metal homeostasis.
Antibiotic resistance necessitates the development of drugs that exploit new mechanisms of action such as the disruption of metal homeostasis. In order to manipulate metals at the site of bacterial infection, two prochelators were developed around a β-lactam core such that the active chelator is released in the presence of bacteria that produce the resistance-causing β-lactamase enzyme. Both prochelators display enhanced activity toward resistant bacteria compared to clinical antibiotics.
Fluorescent sensors are a powerful tool for detecting small concentrations of biological analytes. Two analogs of a ratiometric fluorescent sensor were designed and synthesized to monitor cellular concentrations of copper and iron. These sensors were found to operate as designed in vitro; however the fluorescence intensity necessary for quantification of cellular metal pools has not yet been achieved.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) that have been heavily used in consumer products such as furniture foams, plastics, and textiles since the mid-1970’s. BFRs are added to products in order to meet state flammability standards intended to increase indoor safety in the event of a fire. The three commercial PBDE mixtures, Penta-, Octa-, and DecaBDE, have all been banned in the United States, however, limited use of DecaBDE is still permitted. PBDEs were phased out of production and added to the Stockholm Convention due to concerns over their environmental persistence and toxicity. Human exposure to PBDEs occurs primarily through the inadvertent ingestion of contaminated house dust, as well as though dietary sources. Despite the phase-out and discontinued use of PBDEs, human exposure to this class of chemicals is likely to continue for decades due to the continued use of treated products and existing environmental reservoirs of PBDEs. Extensive research over the years has shown that PBDEs disrupt thyroid hormone (TH) levels and neurodevelopmental endpoints in rodent and fish models. Additionally, there is growing epidemiological evidence linking PBDE exposure in humans to altered TH homeostasis and neurodevelopmental impairments in children. Due to the importance of THs throughout gestation, there is a great need to understand the effects of BFRs on the developing fetus. Specifically, the placenta plays a critical role in the transport, metabolism, and delivery of THs to the fetal compartment during pregnancy and is a likely target for BFR bioaccumulation and endocrine disruption. The central hypothesis of this dissertation research is that BFRs disrupt the activity of TH sulfotransferase (SULT) enzymes, thereby altering TH concentrations in the placenta.
In the first aim of this dissertation research, the concentrations of PBDEs and 2,4,6-TBP were measured in a cohort of 102 placenta tissue samples from an ongoing pregnancy cohort in Durham, NC. Methods were developed for the extraction and analysis of the BFR analytes. It was found that 2,4,6-TBP was significantly correlated with all PBDE analytes, indicating that 2,4,6-TBP may share common product applications with PBDEs or that 2,4,6-TBP is a metabolite of PBDE compounds. Additionally, this was the first study to measure 2,4,6-TBP in human placenta tissues.
In the second aim of this dissertation research, the placenta tissue concentrations of THs, as well as the endogenous activity of deiodinase (DI) and TH SULT enzymes were quantified using the same cohort of 102 placenta tissue samples. Enzyme activity was detected in all samples and this was the first study to measure TH DI and SULT activity in human placenta tissues. Enzyme activities and TH concentrations were compared with BFR concentrations measured in Aim 1. There were few statistically significant associations observed for the combined data, however, upon stratifying the data set based on infant sex, additional significant associations were observed. For example, among males, those with the highest concentrations of BDE-99 in placenta had T3 levels 0.80 times those with the lowest concentration of BDE-99 (95% confidence interval (CI): 0.59, 1.07). Whereas females with the highest concentrations of BDE-99 in placenta had T3 levels 1.50 times those with the lowest concentration of BDE-99 (95% CI: 1.10, 2.04). Additionally, all BFR analyte concentrations were higher in the placenta of males versus females and they were significantly higher for 2,4,6-TBP and BDE-209. 3,3’-T2 SULT activity was significantly higher in female placenta tissues, while type 3 DI activity was significantly higher in male placenta tissues. This research is the first to show sex-specific differences in the bioaccumulation of BFRs in human placenta tissue, as well as differences in TH concentrations and endogenous DI and SULT activity. The underlying mechanisms of these observed sex differences warrant further investigation.
In the third aim of this dissertation research, the effects of BFRs were examined in a human choriocarcinoma placenta cell line, BeWo. Michaelis-Menten parameters and inhibition curves were calculated for 2,4,6-TBP, 3-OH BDE-47, and 6-OH BDE-47. 2,4,6-TBP was shown to be the most potent inhibitor of 3,3’-T2 SULT activity with a calculated IC50 value of 11.6 nM. It was also shown that 2,4,6-TBP and 3-OH BDE-47 exhibit mixed inhibition of 3,3’-T2 sulfation in BeWo cell homogenates. Next, a series of cell culture exposure experiments were performed using 1, 6, 12, and 24 hour exposure durations. Once again, 2,4,6-TBP was shown to be the most potent inhibitor of basal 3,3’-T2 SULT activity by significantly decreasing activity at the high and medium dose (1 M and 0.5 M, respectively) at all measured time points. Interestingly, BDE-99 was also shown to inhibit basal 3,3’-T2 SULT activity in BeWo cells following the 24 hour exposure, despite exhibiting no inhibitory effects in the BeWo cell homogenate experiments. This indicates that BDE-99 must act through a pathway other than direct enzyme inhibition. Following exposures, the TH concentrations in the cell culture growth media and mRNA expression of TH-related genes were also examined. There was no observed effect of BFR treatment on these endpoints. Future work should focus on determining the downstream biological effects of TH SULT disruption in placental cells, as well as the underlying mechanisms of action responsible for reductions in basal TH SULT activity following BFR exposure.
This was one of the first studies to measure BFRs in a cohort of placenta tissue samples from the United States and the first study to measure THs, DI activity, and SULT activity in human placenta tissues. This research provides a novel contribution to our growing understanding of the effects of BFRs on TH homeostasis within the human placenta, and provides further evidence for sex-specific differences within this important organ. Future research should continue to investigate the effects of environmental contaminants on TH homeostasis within the placenta, as this represents the most critical and vulnerable stage of human development.