965 resultados para Algebra, Boolean.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
In this paper we investigate the Boolean functions with maximum essential arity gap. Additionally we propose a simpler proof of an important theorem proved by M. Couceiro and E. Lehtonen in [3]. They use Zhegalkin’s polynomials as normal forms for Boolean functions and describe the functions with essential arity gap equals 2. We use to instead Full Conjunctive Normal Forms of these polynomials which allows us to simplify the proofs and to obtain several combinatorial results concerning the Boolean functions with a given arity gap. The Full Conjunctive Normal Forms are also sum of conjunctions, in which all variables occur.
Resumo:
∗ The present article was originally submitted for the second volume of Murcia Seminar on Functional Analysis (1989). Unfortunately it has been not possible to continue with Murcia Seminar publication anymore. For historical reasons the present vesion correspond with the original one.
Resumo:
The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.
Resumo:
The problem of sequent two-block decomposition of a Boolean function is regarded in case when a good solution does exist. The problem consists mainly in finding an appropriate weak partition on the set of arguments of the considered Boolean function, which should be decomposable at that partition. A new fast heuristic combinatorial algorithm is offered for solving this task. At first the randomized search for traces of such a partition is fulfilled. The recognized traces are represented by some "triads" - the simplest weak partitions corresponding to non-trivial decompositions. After that the whole sought-for partition is restored from the discovered trace by building a track initialized by the trace and leading to the solution. The results of computer experiments testify the high practical efficiency of the algorithm.
Resumo:
An original heuristic algorithm of sequential two-block decomposition of partial Boolean functions is researched. The key combinatorial task is considered: finding of suitable partition on the set of arguments, i. e. such one, on which the function is separable. The search for suitable partition is essentially accelerated by preliminary detection of its traces. Within the framework of the experimental system the efficiency of the algorithm is evaluated, the boundaries of its practical application are determined.
Resumo:
This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.
Resumo:
2000 Mathematics Subject Classification: 17A50, 05C05.
Resumo:
Иво Й. Дамянов - Манипулирането на булеви функции е основнo за теоретичната информатика, в това число логическата оптимизация, валидирането и синтеза на схеми. В тази статия се разглеждат някои първоначални резултати относно връзката между граф-базираното представяне на булевите функции и свойствата на техните променливи.
Resumo:
MSC 2010: 46F30, 46F10
Resumo:
2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.
Resumo:
This dissertation derived hypotheses from the theories of Piaget, Bruner and Dienes regarding the effects of using Algebra Tiles and other manipulative materials to teach remedial algebra to community college students. The dependent variables measured were achievement and attitude towards mathematics. The Piagetian cognitive level of the students in the study was measured and used as a concomitant factor in the study.^ The population for the study was comprised of remedial algebra students at a large urban community college. The sample for the study consisted of 253 students enrolled in 10 sections of remedial algebra at three of the six campuses of the college. Pretests included administration of an achievement pre-measure, Aiken's Mathematics Attitude Inventory (MAI), and the Group Assessment of Logical Thinking (GALT). Posttest measures included a course final exam and a second administration of the MAI.^ The results of the GALT test revealed that 161 students (63.6%) were concrete operational, 65 (25.7%) were transitional, and 27 (10.7%) were formal operational. For the purpose of analyzing the data, the transitional and formal operational students were grouped together.^ Univariate factorial analyses of covariance ($\alpha$ =.05) were performed on the posttest of achievement (covariate = achievement pretest) and the MAI posttest (covariate = MAI pretest). The factors used in the analysis were method of teaching (manipulative vs. traditional) and cognitive level (concrete operational vs. transitional/formal operational).^ The analyses for achievement revealed a significant difference in favor of the manipulatives groups in the computations by campus. Significant differences were not noted in the analysis by individual instructors.^ The results for attitude towards mathematics showed a significant difference in favor of the manipulatives groups for the college-wide analysis and for one campus. The analysis by individual instructor was not significant. In addition, the college-wide analysis was significant in favor of the transitional/formal operational stage of cognitive development. However, support for this conclusion was not obtained in the analyses by campus or individual instructor. ^
Resumo:
Success in mathematics has been identified as a predictor of baccalaureate degree completion. Within the coursework of college mathematics, College Algebra has been identified as a high-risk course due to its low success rates. ^ Research in the field of attribution theory and academic achievement suggests a relationship between a student's attributional style and achievement. Theorists and researchers contend that attributions influence individual reactions to success and failure. They also report that individuals use attributions to explain and justify their performance. Studies in mathematics education identify attribution theory as the theoretical orientation most suited to explain academic performance in mathematics. This study focused on the relationship among a high risk course, low success rates, and attribution by examining the difference in the attributions passing and failing students gave for their performance in College Algebra. ^ The methods for the study included a pilot administration of the Causal Dimension Scale (CDSII) which was used to conduct reliability and principal component analyses. Then, students (n = 410) self-reported their performance on an in-class test and attributed their performance along the dimensions of locus of causality, stability, personal controllability, and external controllability. They also provided open-ended attribution statements to explain the cause of their performance. The quantitative data compared the passing and failing groups and their attributions for performance on a test using One-Way ANOVA and Pearson chi square procedures. The open-ended attribution statements were coded in relation to ability, effort, task difficulty, and luck and compared using a Pearson chi square procedure. ^ The results of the quantitative data comparing passing and failing groups and their attributions along the dimensions measured by the CDSII indicated statistical significance in locus of causality, stability, and personal controllability. The results comparing the open-ended attribution statements indicated statistical significance in the categories of effort and task difficulty. ^
Resumo:
This study investigated the relation of several predictors to high school dropout. The data, composed of records from a cohort of students ( N = 10,100) who entered ninth grade in 2001, were analyzed via logistic regression. The predictor variables were: (a) Algebra I grade, (b) Florida Comprehensive Assessment Test (FCAT) level, (c) language proficiency, (d) gender, (e) race/ethnicity, (f) Exceptional Student Education program membership, and (g) socio-economic status. The criterion was graduation status: graduated or dropped out. Algebra I grades were an important predictor of whether students drop out or graduate; students who failed this course were 4.1 times more likely to drop out than those who passed the course. Other significant predictors of high school dropout were language proficiency, Florida Comprehensive Assessment Test (FCAT) level, gender, and socio-economic status. The main focus of the study was on Algebra I as a predictor, but the study was not designed to discover the specific factors related to or underlying success in this course. Nevertheless, because Algebra I may be considered an important prerequisite for other major facets of the curriculum and because of its high relationship to high school dropout, a recommendation emerging from these findings is that districts address the issue of preventing failure in this course. Adequate support mechanisms for improving retention include addressing the students' readiness for enrolling in mathematics courses as well as curriculum improvements that enhance student readiness through such processes as remediation. Assuring that mathematics instruction is monitored and improved and that remedial programs are in place to facilitate content learning in all subjects for all students, but especially for those having limited English proficiency, are critical educational responsibilities.