992 resultados para Alabama. Dept. of Conservation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Soil Conservation Service and Bureau of Agricultural Economics, U.S. Dept. of Agriculture, in cooperation with the Iowa Agricultural Experiment Station."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"U.S. Dept. of Agriculture in cooperation with the Agricultural Experiment Station, University of Puerto Rico."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Issued May 1946 ; Slightly rev. Apr. 1948."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspector: 1912- W.H. Oates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Description based on: No. 4 (Nov. 1950); title from cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"August 1996."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Disulphide bridges are well known to play key roles in stability, folding and functions of proteins. Introduction or deletion of disulphides by site-directed mutagenesis have produced varying effects on stability and folding depending upon the protein and location of disulphide in the 3-D structure. Given the lack of complete understanding it is worthwhile to learn from an analysis of extent of conservation of disulphides in homologous proteins. We have also addressed the question of what structural interactions replaces a disulphide in a homologue in another homologue. Results: Using a dataset involving 34,752 pairwise comparisons of homologous protein domains corresponding to 300 protein domain families of known 3-D structures, we provide a comprehensive analysis of extent of conservation of disulphide bridges and their structural features. We report that only 54% of all the disulphide bonds compared between the homologous pairs are conserved, even if, a small fraction of the non-conserved disulphides do include cytoplasmic proteins. Also, only about one fourth of the distinct disulphides are conserved in all the members in protein families. We note that while conservation of disulphide is common in many families, disulphide bond mutations are quite prevalent. Interestingly, we note that there is no clear relationship between sequence identity between two homologous proteins and disulphide bond conservation. Our analysis on structural features at the sites where cysteines forming disulphide in one homologue are replaced by non-Cys residues show that the elimination of a disulphide in a homologue need not always result in stabilizing interactions between equivalent residues. Conclusion: We observe that in the homologous proteins, disulphide bonds are conserved only to a modest extent. Very interestingly, we note that extent of conservation of disulphide in homologous proteins is unrelated to the overall sequence identity between homologues. The non-conserved disulphides are often associated with variable structural features that were recruited to be associated with differentiation or specialisation of protein function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An assessment of marine elapid snakes found 9% of marine elapids are threatened with extinction, and an additional 6% are Near Threatened. A large portion (34%) is Data Deficient. An analysis of distributions revealed the greatest species diversity is found in Southeast Asia and northern Australia. Three of the seven threatened species occur at Ashmore and Hibernia Reefs in the Timor Sea, while the remaining threatened taxa occur in the Philippines, Niue, and Solomon Islands. The majority of Data Deficient species are found in Southeast Asia. Threats to marine snakes include loss of coral reefs and coastal habitat, incidental bycatch in fisheries, as well as fisheries that target snakes for leather. The presence of two Critically Endangered and one Endangered species in the Timor Sea suggests the area is of particular conservation concern. More rigorous, long-term monitoring of populations is needed to evaluate the success of "conservation measures" for marine snake species, provide scientifically based guidance for determining harvest quotas, and to assess the populations of many Data Deficient species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One hundred complexes have been investigated exhibiting D-X center dot center dot center dot A interactions, where X = H, Cl or Li and DX is the `X bond' donor and A is the acceptor. The optimized structures of all these complexes have been used to propose a generalized `Legon-Millen rule' for the angular geometry in all these interactions. A detailed Atoms in Molecules (AIM) theoretical analysis confirms an important conclusion, known in the literature: there is a strong correlation between the electron density at the X center dot center dot center dot A bond critical point (BCP) and the interaction energy for all these interactions. In addition, we show that extrapolation of the fitted line leads to the ionic bond for Li-bonding (electrostatic) while for hydrogen and chlorine bonding, it leads to the covalent bond. Further, we observe a strong correlation between the change in electron density at the D-X BCP and that at the X center dot center dot center dot A BCP, suggesting conservation of the bond order. The correlation found between penetration and electron density at BCP can be very useful for crystal structure analysis, which relies on arbitrary van der Waals radii for estimating penetration. Various criteria proposed for shared-and closed-shell interactions based on electron density topology have been tested for H/Cl/Li bonded complexes. Finally, using the natural bond orbital (NBO) analysis it is shown that the D-X bond weakens upon X bond formation, whether it is ionic (DLi) or covalent (DH/DCl) and the respective indices such as ionicity or covalent bond order decrease. Clearly, one can think of conservation of bond order that includes ionic and covalent contributions to both D-X and X center dot center dot center dot A bonds, for not only X = H/Cl/Li investigated here but also any atom involved in intermolecular bonding.