997 resultados para Airborne imaging spectrometry
Resumo:
We investigated the neural basis for spontaneous chemo-stimulated increases in ventilation in awake, healthy humans. Blood oxygen level dependent (BOLD) functional MRI was performed in nine healthy subjects using T2 weighted echo planar imaging. Brain volumes (52 transverse slices, cortex to high spinal cord) were acquired every 3.9 s. The 30 min paradigm consisted of six, 5-min cycles, each cycle comprising 45 s of hypoxic-isocapnia, 45 s of isooxic-hypercapnia and 45 s of hypoxic-hypercapnia, with 55 s of non-stimulatory hyperoxic-isocapnia (control) separating each stimulus period. Ventilation was significantly (p<0.001) increased during hypoxic-isocapnia, isooxic-hypercapnia and hypoxic-hypercapnia (17.0, 13.8, 24.9 L/min respectively) vs. control (8.4 L/min) and was associated with significant (p<0.05, corrected for multiple comparisons) signal increases within a bilateral network that included the basal ganglia, thalamus, red nucleus, cerebellum, parietal cortex, cingulate and superior mid pons. The neuroanatomical structures identified provide evidence for the spontaneous control of breathing to be mediated by higher brain centres, as well as respiratory nuclei in the brainstem.
Resumo:
The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online.
Resumo:
ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided.
Resumo:
The functional architecture of the occipital cortex is being studied with increasing detail. Functional and structural MR based imaging are altering views about the organisation of the human visual system. Recent advances have ranged from comparative studies with non-human primates to predictive scanning. The latter multivariate technique describes with sub-voxel resolution patterns of activity that are characteristic of specific visual experiences. One can deduce what a subject experienced visually from the pattern of cortical activity recorded. The challenge for the future is to understand visual functions in terms of cerebral computations at a mesoscopic level of description and to relate this information to electrophysiology. The principal medical application of this new knowledge has focused to a large extent on plasticity and the capacity for functional reorganisation. Crossmodality visual-sensory interactions and cross-correlations between visual and other cerebral areas in the resting state are areas of considerable current interest. The lecture will review findings over the last two decades and reflect on possible roles for imaging studies in the future.
Resumo:
Elderly individuals display a rapid age-related increase in intraindividual variability (IIV) of their performances. This phenomenon could reflect subtle changes in frontal lobe integrity. However, structural studies in this field are still missing. To address this issue, we computed an IIV index for a simple reaction time (RT) task and performed magnetic resonance imaging (MRI) including voxel based morphometry (VBM) and the tract based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) in 61 adults aged from 22 to 88 years. The age-related IIV increase was associated with decreased fractional anisotropy (FA) as well as increased radial (RD) and mean (MD) diffusion in the main white matter (WM) fiber tracts. In contrast, axial diffusion (AD) and grey matter (GM) densities did not show any significant correlation with IIV. In multivariate models, only FA has an age-independent effect on IIV. These results revealed that WM but not GM changes partly mediated the age-related increase of IIV. They also revealed that the association between WM and IIV could not be only attributed to the damage of frontal lobe circuits but concerned the majority of interhemispheric and intrahemispheric corticocortical connections.
Resumo:
A high-resolution three-dimensional (3-D) seismic reflection survey was conducted in Lake Geneva, near the city of Lausanne, Switzerland, as part of a project for developing such seismic techniques. Using a single 48-channel streamer, the 3-D site with an area of 1200 m x 600 m was surveyed in 10 days. A variety of complex geologic structures (e.g. thrusts, folds, channel-fill) up to similar to150 m below the water bottom were obtained with a 15 in.(3) water gun. The 3-D data allowed the construction of an accurate velocity model and the distinction of five major seismic facies within the Lower Freshwater Molasse (Aquitanian) and the Quaternary sedimentary units. Additionally, the Plateau Molasse (PM) and Subalpine Molasse (SM) erosional surface, "La Paudeze" thrust fault (PM-SM boundary) and the thickness of Quaternary sediments were accurately delineated in 3-D.
Resumo:
Black-blood fast spin-echo imaging is a powerful technique for the evaluation of cardiac anatomy. To avoid fold-over artifacts, using a sufficiently large field of view in phase-encoding direction is mandatory. The related oversampling affects scanning time and respiratory chest motion artifacts are commonly observed. The excitation of a volume that exclusively includes the heart without its surrounding structures may help to improve scan efficiency and minimize motion artifacts. Therefore, and by building on previously reported inner-volume approach, the combination of a black-blood fast spin-echo sequence with a two-dimensionally selective radiofrequency pulse is proposed for selective "local excitation" small field of view imaging of the heart. This local excitation technique has been developed, implemented, and tested in phantoms and in vivo. With this method, small field of view imaging of a user-specified region in the human thorax is feasible, scanning becomes more time efficient, motion artifacts can be minimized, and additional flexibility in the choice of imaging parameters can be exploited.
Resumo:
The feasibility of three-dimensional (3D) whole-heart imaging of the coronary venous (CV) system was investigated. The hypothesis that coronary magnetic resonance venography (CMRV) can be improved by using an intravascular contrast agent (CA) was tested. A simplified model of the contrast in T(2)-prepared steady-state free precession (SSFP) imaging was applied to calculate optimal T(2)-preparation durations for the various deoxygenation levels expected in venous blood. Non-contrast-agent (nCA)- and CA-enhanced images were compared for the delineation of the coronary sinus (CS) and its main tributaries. A quantitative analysis of the resulting contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) in both approaches was performed. Precontrast visualization of the CV system was limited by the poor CNR between large portions of the venous blood and the surrounding tissue. Postcontrast, a significant increase in CNR between the venous blood and the myocardium (Myo) resulted in a clear delineation of the target vessels. The CNR improvement was 347% (P < 0.05) for the CS, 260% (P < 0.01) for the mid cardiac vein (MCV), and 430% (P < 0.05) for the great cardiac vein (GCV). The improvement in SNR was on average 155%, but was not statistically significant for the CS and the MCV. The signal of the Myo could be significantly reduced to about 25% (P < 0.001).
Resumo:
Recently a new measure of the cooperative behavior of simultaneous time series was introduced (Carmeli et al. NeuroImage 2005). This measure called S-estimator is defined from the embedding dimension in a state space. S-estimator quantifies the amount of synchronization within a data set by comparing the actual dimensionality of the set with the expected full dimensionality of the asynchronous set. It has the advantage of being a multivariate measure over traditionally used in systems neuroscience bivariate measures of synchronization. Multivariate measures of synchronization are of particular interest for applications in the field of modern multichannel EEG research, since they easily allow mapping of local and/or regional synchronization and are compatible with other imaging techniques. We applied Sestimator to the analysis of EEG synchronization in schizophrenia patients vs. matched controls. The whole-head mapping with S-estimator revealed a specific pattern of local synchronization in schizophrenia patients. The differences in the landscape of synchronization included decreased local synchronization in the territories over occipital and midline areas and increased synchronization over temporal areas. In frontal areas, the S-estimator revealed a tendency for an asymmetry: decreased S-values over the left hemisphere were adjacent to increased values over the right hemisphere. Separate calculations showed reproducibility of this pattern across the main EEG frequency bands. The maintenance of the same synchronization landscape across EEG frequencies probably implies the structural changes in the cortical circuitry of schizophrenia patients. These changes are regionally specific and suggest that schizophrenia is a misconnectivity rather than hypo- or hyper-connectivity disorder.
Resumo:
This document provides general information about somatostatin receptor scintigraphy with (111)In-pentetreotide. This guideline should not be regarded as the only approach to visualise tumours expressing somatostatin receptors or as exclusive of other nuclear medicine procedures useful to obtain comparable results. The aim of this guideline is to assist nuclear medicine physicians in recommending, performing, reporting and interpreting the results of (111)In-pentetreotide scintigraphy.
Resumo:
The effect of copper (Cu) filtration on image quality and dose in different digital X-ray systems was investigated. Two computed radiography systems and one digital radiography detector were used. Three different polymethylmethacrylate blocks simulated the pediatric body. The effect of Cu filters of 0.1, 0.2, and 0.3 mm thickness on the entrance surface dose (ESD) and the corresponding effective doses (EDs) were measured at tube voltages of 60, 66, and 73 kV. Image quality was evaluated in a contrast-detail phantom with an automated analyzer software. Cu filters of 0.1, 0.2, and 0.3 mm thickness decreased the ESD by 25-32%, 32-39%, and 40-44%, respectively, the ranges depending on the respective tube voltages. There was no consistent decline in image quality due to increasing Cu filtration. The estimated ED of anterior-posterior (AP) chest projections was reduced by up to 23%. No relevant reduction in the ED was noted in AP radiographs of the abdomen and pelvis or in posterior-anterior radiographs of the chest. Cu filtration reduces the ESD, but generally does not reduce the effective dose. Cu filters can help protect radiosensitive superficial organs, such as the mammary glands in AP chest projections.
Resumo:
Background / Purpose : Lemierre Syndrome (LS) is defined by a recent oro-pharangeal infection, the clinical presence or radiological demonstration of internal jugular vein (IJV) thrombosis and documented anaerobe germ, principally Fusobacterium necrophorum (Fn) leading to septicaemia and septic embolization. It is a rare infection described since 1900 and it nearly disappeared since the beginning of the antibiotic area. Even if it is seldom described in the literature, this infection is reappearing in the last 10 years, either because of the increase of antibiotic resistance or by modification of antibiotic prescription. The aim of this study is to describe the role of medical imaging in the diagnosis, staging and follow up of Lemierre syndrome, as well as to describe the ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) findings of this rare disease. Patients and methods : Radiological and medical files of patients diagnosed with Lemierre syndrome in the past 6 years at CHUV hospital were analysed retrospectively. The CT scan, US, colour Doppler US (CDUS) and MRI examinations that were performed have been examined so as to define their specific imaging findings. Results IJV thrombosis was demonstrated in 2 cases by US, by CT in 6 cases and MRI in one case. Septic pulmonary emboli were detected by CT in 5 patients. Complications of the LS were depicted by MR in one case and by CT in 1 case. Conclusion : In the appropriate clinical settings, US, CT or MR evidence of IJV thrombosis and chest CT suggestive of septic emboli, should lead the physician to consider the diagnosis of LS. As a consequence, imaging allows a faster diagnosis and a more efficient treatment of this infection, which in case of insufficient therapy can lead to death.
Resumo:
Anti-basal ganglia antibodies (ABGAs) have been suggested to be a hallmark of autoimmunity in Gilles de la Tourette's syndrome (GTS), possibly related to prior exposure to streptococcal infection. In order to detect whether the presence of ABGAs was associated with subtle structural changes in GTS, whole-brain analysis using independent sets of T(1) and diffusion tensor imaging MRI-based methods were performed on 22 adults with GTS with (n = 9) and without (n = 13) detectable ABGAs in the serum. Voxel-based morphometry analysis failed to detect any significant difference in grey matter density between ABGA-positive and ABGA-negative groups in caudate nuclei, putamina, thalami and frontal lobes. These results suggest that ABGA synthesis is not related to structural changes in grey and white matter (detectable with these methods) within frontostriatal circuits.