991 resultados para Air-pilot guides.
Resumo:
AIM: The purpose of this pilot study was to introduce knee alignment as a potential predictor of sedentary activity levels in boys and girls. METHODS: Dual energy x-ray absorptiometry (DXA) and anthropometric assessment were conducted on 47 children (21 boys and 26 girls; 5-14 y) and their gender-matched parent. Body Mass Index (BMI) and abdominal-to-height ratio were calculated. Lower extremity alignment was determined by anatomic tibiofemoral angle (TFA) measurements from DXA images. Time spent in moderate-to-vigorous physical activity and sedentary activities were obtained from a parent-reported questionnaire. Stepwise multiple regression analyses identified anthropometric, musculoskeletal, and activity factors of parents and children for predicting total time spent in sedentary behaviour. RESULTS: Weight, total sedentary time of parents and TFA are moderate predictors of sedentary behaviour in children (R2=0.469). When stratifying for gender, TFA and total sedentary time of the parent, as well as waist circumference, are the most useful predictors of sedentary behaviour in boys (R2=0.648). However, weight is the only predictor of sedentary behaviour in girls (R2=0.479). CONCLUSION: Negative associations between TFA and sedentary behaviour indicate that even slight variations in musculoskeletal alignment may influence a child's motivation to be physically active. Although growth and development is complicated by many potentialities, this pilot study suggests that orthopaedic factors should also be considered when evaluating physical activity in children
Resumo:
PURPOSE: To investigate how distance visual acuity in the presence of defocus and astigmatism is affected by age and whether aberration properties of young and older eyes can explain any differences. METHODS: Participants were 12 young adults (mean [±SD] age, 23 [±2] years) and 10 older adults (mean [±SD] age, 57 [±4] years). Cyclopleged right eyes were used with 4-mm effective pupil sizes. Thirteen blur conditions were used by adding five spherical lens conditions (-1.00 diopters [D], -0.50 D, plano/0.00 D, +0.50 D, and +1.00 D) and adding two cross-cylindrical lenses (+0.50 DS/-1.00 DC and +1.00 D/-2.00 DC, or 0.50 D and 1.00 D astigmatism) at four negative cylinder axes (45, 90, 135, and 180 degrees). Targets were single lines of high-contrast letters based on the Bailey-Lovie chart. Successively smaller lines were read until a participant could no longer read any of the letters correctly. Aberrations were measured with a COAS-HD Hartmann-Shack aberrometer. RESULTS: There were no significant differences between the two age groups. We estimated that 70 to 80 participants per group would be needed to show significant effects of the trend of greater visual acuity loss for the young group. Visual acuity loss for astigmatism was twice that for defocus of the same magnitude of blur strength (0.33 logMAR [logarithm of the minimum angle of resolution]/D compared with 0.18 logMAR/D), contrary to the geometric prediction of similar loss. CONCLUSIONS: Any age-related differences in visual acuity in the presence of defocus and astigmatism were swamped by interparticipant variation.
Resumo:
Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.
Resumo:
Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1–December 21) in 2010 with the same calendar date of baseline years (2006–2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73–0.86), 0.77 (95% CI: 0.66–0.89) and 0.68 (95% CI: 0.57–0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.
Resumo:
Purpose We sought to analyse clinical and oncological outcomes of patients after guided resection of periacetabular tumours and endoprosthetic reconstruction of the remaining defect. Methods From 1988 to 2008, we treated 56 consecutive patients (mean age 52.5 years, 41.1 % women). Patients were followed up either until death or February 2011 (mean follow up 5.5 years, range 0.1–22.5, standard deviation ± 5.3). Kaplan–Meier analysis was used to estimate survival rates. Results Disease-specific survival was 59.9 % at five years and 49.7 % at ten and 20 years, respectively. Wide resection margins were achieved in 38 patients, whereas 11 patients underwent marginal and seven intralesional resection. Survival was significantly better in patients with wide or marginal resection than in patients with intralesional resection (p = 0.022). Survival for patients with secondary tumours was significantly worse than for patients with primary tumours (p = 0.003). In 29 patients (51.8 %), at least one reoperation was necessary, resulting in a revision-free survival of 50.5 % at five years, 41.1 % at ten years and 30.6 % at 20 years. Implant survival was 77.0 % at five years, 68.6 % at ten years and 51.8 % at 20 years. A total of 35 patients (62.5 %) experienced one or more complications after surgery. Ten of 56 patients (17.9 %) experienced local recurrence after a mean of 8.9 months. The mean postoperative Musculoskeletal Tumor Society (MSTS) score was 18.1 (60.1 %). Conclusion The surgical approach assessed in this study simplifies the process of tumour resection and prosthesis implantation and leads to acceptable clinical and oncological outcomes.
Resumo:
The measurement of illicit drug metabolites in raw wastewater is increasingly being adopted as an approach to objectively monitor population-level drug use, and is an effective complement to traditional epidemiological methods. As such, it has been widely applied in western countries. In this study, we utilised this approach to assess drug use patterns over nine days during April 2011 in Hong Kong. Raw wastewater samples were collected from the largest wastewater treatment plant serving a community of approximately 3.5 million people and analysed for excreted drug residues including cocaine, ketamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and key metabolites using liquid chromatography coupled with tandem mass spectrometry. The overall drug use pattern determined by wastewater analysis was consistent with that have seen amongst people coming into contact with services in relation to substance use; among our target drugs, ketamine (estimated consumption: 1400–1600 mg/day/1000 people) was the predominant drug followed by methamphetamine (180–200 mg/day/1000 people), cocaine (160–180 mg/day/1000 people) and MDMA (not detected). The levels of these drugs were relatively steady throughout the monitoring period. Analysing samples at higher temporal resolution provided data on diurnal variations of drug residue loads. Elevated ratios of cocaine to benzoylecgonine were identified unexpectedly in three samples during the evening and night, providing evidence for potential dumping events of cocaine. This study provides the first application of wastewater analysis to quantitatively evaluate daily drug use in an Asian metropolitan community. Our data reinforces the benefit of wastewater monitoring to health and law enforcement authorities for strategic planning and evaluation of drug intervention strategies.
Resumo:
Objective To develop a child victimization survey among a diverse group of child protection experts and examine the performance of the instrument through a set of international pilot studies. Methods The initial draft of the instrument was developed after input from scientists and practitioners representing 40 countries. Volunteers from the larger group of scientists participating in the Delphi review of the ICAST P and R reviewed the ICAST C by email in 2 rounds resulting in a final instrument. The ICAST C was then translated and back translated into six languages and field tested in four countries using a convenience sample of 571 children 12–17 years of age selected from schools and classrooms to which the investigators had easy access. Results The final ICAST C Home has 38 items and the ICAST C Institution has 44 items. These items serve as screeners and positive endorsements are followed by queries for frequency and perpetrator. Half of respondents were boys (49%). Endorsement for various forms of victimization ranged from 0 to 51%. Many children report violence exposure (51%), physical victimization (55%), psychological victimization (66%), sexual victimization (18%), and neglect in their homes (37%) in the last year. High rates of physical victimization (57%), psychological victimization (59%), and sexual victimization (22%) were also reported in schools in the last year. Internal consistency was moderate to high (alpha between .685 and .855) and missing data low (less than 1.5% for all but one item). Conclusions In pilot testing, the ICAST C identifies high rates of child victimization in all domains. Rates of missing data are low, and internal consistency is moderate to high. Pilot testing demonstrated the feasibility of using child self-report as one strategy to assess child victimization. Practice implications The ICAST C is a multi-national, multi-lingual, consensus-based survey instrument. It is available in six languages for international research to estimate child victimization. Assessing the prevalence of child victimization is critical in understanding the scope of the problem, setting national and local priorities, and garnering support for program and policy development aimed at child protection.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
The literature around Library 2.0 remains largely theoretical with few empirical studies and is particularly limited in developing countries such as Indonesia. This study addresses this gap and aims to provide information about the current state of knowledge on Indonesian LIS professionals’ understanding of Library 2.0. The researchers used qualitative and quantitative approaches for this study, asking thirteen closed- and open-ended questions in an online survey. The researchers used descriptive and in vivo coding to analyze the responses. Through their analysis, they identified three themes: technology, interactivity, and awareness of Library 2.0. Respondents demonstrated awareness of Library 2.0 and a basic understanding of the roles of interactivity and technology in libraries. However, overreliance on technology used in libraries to conceptualize Library 2.0 without an emphasis on its core characteristics and principles could lead to the misalignment of limited resources. The study results will potentially strengthen the research base for Library 2.0 practice as well as inform LIS curriculum in Indonesia so as to develop practitioners who are able to adapt to users’ changing needs and expectations. It is expected that the preliminary data from this study could be used to design a much larger and more complex future research project in this area.
Resumo:
As more raw sugar factories become involved in the manufacture of by-products and cogeneration, bagasse is becoming an increasingly valuable commodity. However, in most factories, most of the bagasse produced is used to generate steam in relatively old and inefficient boilers. Efficient bagasse fired boilers are a high capital cost item and the cost of supplying the steam required to run a sugar factory by other means is prohibitive. For many factories a more realistic way to reduce bagasse consumption is to increase the efficiency of existing boilers. The Farleigh No. 3 boiler is a relatively old low efficiency boiler. Like many in the industry, the performance of this boiler has been adversely affected by uneven gas and air flow distributions and air heater leaks. The combustion performance and efficiency of this boiler have been significantly improved by making the gas and air flow distributions through the boiler more uniform and repairing the air heater. The estimated bagasse savings easily justify the cost of the boiler improvements.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
Introduction Hospitalisation for percutaneous coronary intervention (PCI) is often short, with limited nurse-teaching time and poor information absorption. Currently, patients are discharged home only to wait up to 4-8 weeks to commence a secondary prevention program and visit their cardiologist. This wait is an anxious time for patients and confidence or self-efficacy (SE) to self-manage may be low. Objectives To determine the effects of a nurse-led, educational intervention on participant SE and anxiety in the early post-discharge period. Methods A pilot study was undertaken as a randomised controlled clinical trial. Thirty-three participants were recruited, with n=13 randomised to the intervention group. A face-to-face, nurse-led, educational intervention was undertaken within the first 5-7 days post-discharge. Intervention group participants received standard post-discharge education, physical assessment, with a strong focus on the emotional impact of cardiovascular events and PCI. Early reiteration of post-discharge education was offered, along with health professional support with the aim to increase patients’ SE and to effectively manage their post-discharge health and well being, as well as anxieties. Self-efficacy to return to normal activities was measured to gauge participants’ abilities to manage post-PCI after attending the intervention using the cardiac self-efficacy (CSE) scale. State and trait anxiety was also measured using the State-Trait Anxiety Inventory (STAI) to determine if an increase in SE would influence participant anxiety. Results There were some increases in mean CSE scores in the intervention group participants over time. Areas of increase included return to normal social activities and confidence to change diet. Although reductions were observed in mean state and trait anxiety scores in both groups, an overall larger reduction in intervention group participants was observed over time. Conclusion It is essential that patients are given the education, support, and skills to self-manage in the early post-discharge period so that they have greater SE and are less anxious. This study provides some initial evidence that nurse-led support and education during this period, particularly the first week following PCI, is beneficial and could be trialled using alternate modes of communication to support remote and rural PCI patients and extend to other cardiovascular patients.
Resumo:
Identifying inequalities in air pollution levels across population groups can help address environmental justice concerns. We were interested in assessing these inequalities across major urban areas in Australia. We used a land-use regression model to predict ambient nitrogen dioxide (NO2) levels and sought the best socio-economic and population predictor variables. We used a generalised least squares model that accounted for spatial correlation in NO2 levels to examine the associations between the variables. We found that the best model included the index of economic resources (IER) score as a non-linear variable and the percentage of non-Indigenous persons as a linear variable. NO2 levels decreased with increasing IER scores (higher scores indicate less disadvantage) in almost all major urban areas, and NO2 also decreased slightly as the percentage of non-Indigenous persons increased. However, the magnitude of differences in NO2 levels was small and may not translate into substantive differences in health.
Resumo:
The purpose of this study was to compare kinematics and kinetics during walking for healthy subjects using unstable shoes with different designs. Ten subjects participated in this study, and foot biomechanical data during walking were quantified using motion analysis system and a force plate. Data were collected for unstable shoes condition after accommodation period of one week. With soft material added in the heel region, the peak impact force was effectively reduced when compared among similar shapes. In addition, the soft material added in the rocker bottom showed more to be in dorsiflexed position during the initial stance. The shoe with three rocker curves design reduced the contact area in the heel strike, which may result in increasing human body forward speed. Further studies shall be carried out after adapting to long periods of wearing unstable shoes.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.