989 resultados para Agricultural extension
Resumo:
This book introduces the major agricultural activities in India and their impact on soil and groundwater. It lists the basic aspects of agricultural activities and introduces soil properties, classification and processes, and groundwater characteristics, movement, and recharge aspects. It further discusses soil and groundwater pollution from various sources, impacts of irrigation, drainage, fertilizer, and pesticide. Finally, the book dwells upon conservation and management of groundwater and soil.
Resumo:
Considering the linearized boundary layer equations for three-dimensional disturbances, a Mangler type transformation is used to reduce this case to an equivalent two-dimensional one.
Resumo:
In the present paper, the constitutive model is proposed for cemented soils, in which the cementation component and frictional component are treated separately and then added together to get overall response. The modified Cam clay is used to predict the frictional resistance and an elasto-plastic strain softening model is proposed for the cementation component. The rectangular isotropic yield curve proposed by Vatsala (1995) for the bond component has been modified in order to account for the anisotropy generally observed in the case of natural soft cemented soils. In this paper, the model proposed is used to predict the experimental results of extension tests on the soft cemented soils whereas compression test results are presented elsewhere. The model predictions compare quite satisfactorily with the observed response. A few input parameters are required which are well defined and easily determinable and the model uses associated flow rule.
Resumo:
This study presents development of a computational fluid dynamic (CFD) model to predict unsteady, two-dimensional temperature, moisture and velocity distributions inside a novel, biomass-fired, natural convection-type agricultural dryer. Results show that in initial stages of drying, when material surface is wet and moisture is easily available, moisture removal rate from surface depends upon the condition of drying air. Subsequently, material surface becomes dry and moisture removal rate is driven by diffusion of moisture from inside to the material surface. An optimum 9-tray configuration is found to be more efficient than for the same mass of material and volume of dryer. A new configuration of dryer, mainly to explore its potential to increasing uniformity in drying across all trays, is also analyzed. This configuration involves diverting a portion of hot air before it enters over the first tray and is supplied directly at an intermediate location in the dryer. Uniformity in drying across trays has increased for the kind of material simulated.
Resumo:
The study presents an analysis aimed at choosing between off-grid solar photovoltaic, biomass gasifier based power generation and conventional grid extension for remote village electrification. The model provides a relation between renewable energy systems and the economical distance limit (EDL) from the existing grid point, based on life cycle cost (LCC) analysis, where the LCC of energy for renewable energy systems and grid extension will match. The LCC of energy feed to the village is arrived at by considering grid availability and operating hours of the renewable energy systems. The EDL for the biomass gasifier system of 25 kW capacities is 10.5 km with 6 h of daily operation and grid availability. However, the EDL for a similar 25 kW capacity photovoltaic system is 35 km for the same number of hours of operation and grid availability. The analysis shows that for villages having low load demand situated far away from the existing grid line, biomass gasification based systems are more cost competitive than photovoltaic systems or even compared to grid extension. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.
Resumo:
Motivated by the recent Coherent Space-Time Shift Keying (CSTSK) philosophy, we construct new dispersion matrices for rotationally invariant PSK signaling sets. Given a specific PSK signal constellation, the dispersion matrices of the existing CSTSK scheme were chosen by maximizing the mutual information over randomly generated sets of dispersion matrices. In this contribution we propose a general method for constructing a set of structured dispersion matrices for arbitrary PSK signaling sets using Field Extension (FE) codes and then study the attainable Symbol Error Rate (SER) performance of some example constructions. We demonstrate that the proposed dispersion scheme is capable of outperforming the existing dispersion arrangement at medium to high SNRs.
Resumo:
For improved water management and efficiency of use in agriculture, studies dealing with coupled crop-surface water-groundwater models are needed. Such integrated models of crop and hydrology can provide accurate quantification of spatio-temporal variations of water balance parameters such as soil moisture store, evapotranspiration and recharge in a catchment. Performance of a coupled crop-hydrology model would depend on the availability of a calibrated crop model for various irrigated/rainfed crops and also on an accurate knowledge of soil hydraulic parameters in the catchment at relevant scale. Moreover, such a coupled model should be designed so as to enable the use/assimilation of recent satellite remote sensing products (optical and microwave) in order to model the processes at catchment scales. In this study we present a framework to couple a crop model with a groundwater model for applications to irrigated groundwater agricultural systems. We discuss the calibration of the STICS crop model and present a methodology to estimate the soil hydraulic parameters by inversion of crop model using both ground and satellite based data. Using this methodology we demonstrate the feasibility of estimation of potential recharge due to spatially varying soil/crop matrix.
Resumo:
This paper aims at extending the universal erosive burning law developed by two of the present authors from axi-symmetric internally burning grains to partly symmetric burning grains. This extension revolves around three dimensional flow calculations inside highly loaded grain geometry and benefiting from an observation that the flow gradients normal to the surface in such geometries have a smooth behavior along the perimeter of the grain. These are used to help identify the diameter that gives the same perimeter the characteristic dimension rather than a mean hydraulic diameter chosen earlier. The predictions of highly loaded grains from the newly chosen dimension in the erosive burning law show better comparison with measured pressure-time curves while those with mean hydraulic diameter definitely over-predict the pressures. (c) 2013 IAA. Published by Elsevier Ltd. All rights reserved.
Resumo:
To achieve food security and meet the demands of the ever-growing human populations, farming systems have assumed unsustainable practices to produce more from a finite land area. This has been cause for concern mainly due to the often-irreversible damage done to the otherwise productive agricultural landscapes. Agro-ecology is proclaimed to be deteriorating due to eroding integrity of connected ecological mosaics and vulnerability to climate change. This has contributed to declining species diversity, loss of buffer vegetation, fragmentation of habitats, and loss of natural pollinators or predators, which eventually leads to decline in ecosystem services. Currently, a hierarchy of conservation initiatives is being considered to restore ecological integrity of agricultural landscapes. However, the challenge of identifying a suitable conservation strategy is a daunting task in view of socio-ecological factors that may constrain the choice of available strategies. One way to mitigate this situation and integrate biodiversity with agricultural landscapes is to implement offset mechanisms, which are compensatory and balancing approaches to restore the ecological health and function of an ecosystem. This needs to be tailored to the history of location specific agricultural practices, and the social, ecological and environmental conditions. The offset mechanisms can complement other initiatives through which farmers are insured against landscape-level risks such as droughts, fire and floods. For countries in the developing world with significant biodiversity and extensive agriculture, we should promote a comprehensive model of sustainable agricultural landscapes and ecosystem services, replicable at landscape to regional scales. Arguably, the model can be a potential option to sustain the integrity of biodiversity mosaic in agricultural landscapes.
Resumo:
Transductive SVM (TSVM) is a well known semi-supervised large margin learning method for binary text classification. In this paper we extend this method to multi-class and hierarchical classification problems. We point out that the determination of labels of unlabeled examples with fixed classifier weights is a linear programming problem. We devise an efficient technique for solving it. The method is applicable to general loss functions. We demonstrate the value of the new method using large margin loss on a number of multi-class and hierarchical classification datasets. For maxent loss we show empirically that our method is better than expectation regularization/constraint and posterior regularization methods, and competitive with the version of entropy regularization method which uses label constraints.
Resumo:
Uniaxial compression experiments were conducted on two magnesium (Mg) single crystals whose crystallographic orientations facilitate the deformation either by basal slip or by extension twinning. Specimen size effects were examined by conducting experiments on mu m- and mm-sized samples. A marked specimen size effect was noticed, with micropillars exhibiting significantly higher flow stress than bulk samples. Further, it is observed that the twin nucleation stress exerts strong size dependence, with micropillars requiring substantially higher stress than the bulk samples. The flow curves obtained on the bulk samples are smooth whereas those obtained from micropillars exhibit intermittent and precipitous stress drops. Electron backscattered diffraction and microstructural analyses of the deformed samples reveal that the plastic deformation in basal slip oriented crystals occurs only by slip while twin oriented crystals deform by both slip and twinning modes. The twin oriented crystals exhibit a higher strain hardening during plastic deformation when compared to the single slip oriented crystals. The strain hardening rate, theta, of twin oriented crystals is considerably greater in micropillars compared to the bulk single crystals, suggesting the prevalence of different work hardening mechanisms at these different sample sizes. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
While considered as sustainable and low-cost agricultural amendments, the impacts of organic fertilizers on downstream aquatic microbial communities remain poorly documented. We investigated the quantity and quality of the dissolved organic matter leaching from agricultural soil amended with compost, vermicompost or biochar and assessed their effects on lake microbial communities, in terms of viral and bacterial abundances, community structure and metabolic potential. The addition of compost and vermicompost significantly increased the amount of dissolved organic carbon in the leachate compared with soil alone. Leachates from these additions, either with or without biochar, were highly bioavailable to aquatic microbial communities, although reducing the metabolic potential of the community and harbouring more specific communities. Although not affecting bacterial richness or taxonomic distributions, the specific addition of biochar affected the original lake bacterial communities, resulting in a strongly different community. This could be partly explained by viral burst and converging bacterial abundances throughout the samples. These results underline the necessity to include off-site impacts of agricultural amendments when considering their cascading effect on downstream aquatic ecosystems.