845 resultados para Adaptive divergence
Resumo:
A year-long field study of the thermal environment in university classrooms was conducted from March 2005 to May 2006 in Chongqing, China. This paper presents the occupants’ thermal sensation votes and discusses the occupants’ adaptive response and perception of the thermal environment in a naturally conditioned space. Comparisons between the Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) have been made as well as between the Actual Percentage of Dissatisfied (APD) and Predicted Percentage of Dissatisfied (PPD). The adaptive thermal comfort zone for the naturally conditioned space for Chongqing, which has hot summer and cold winter climatic characteristics, has been proposed based on the field study results. The Chongqing adaptive comfort range is broader than that of the ASHRAE Standard 55-2004 in general, but in the extreme cold and hot months, it is narrower. The thermal conditions in classrooms in Chongqing in summer and winter are severe. Behavioural adaptation such as changing clothing, adjusting indoor air velocity, taking hot/cold drinks, etc., as well as psychological adaptation, has played a role in adapting to the thermal environment.
Resumo:
Improving methodology for Phase I dose-finding studies is currently of great interest in pharmaceutical and medical research. This article discusses the current atmosphere and attitude towards adaptive designs and focuses on the influence of Bayesian approaches.
Resumo:
A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.
Resumo:
This paper considers the use of a discrete-time deadbeat control action on systems affected by noise. Variations on the standard controller form are discussed and comparisons are made with controllers in which noise rejection is a higher priority objective. Both load and random disturbances are considered in the system description, although the aim of the deadbeat design remains as a tailoring of reference input variations. Finally, the use of such a deadbeat action within a self-tuning control framework is shown to satisfy, under certain conditions, the self-tuning property, generally though only when an extended form of least-squares estimation is incorporated.
Resumo:
Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.
Resumo:
The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.
Resumo:
A nonlinear general predictive controller (NLGPC) is described which is based on the use of a Hammerstein model within a recursive control algorithm. A key contribution of the paper is the use of a novel, one-step simple root solving procedure for the Hammerstein model, this being a fundamental part of the overall tuning algorithm. A comparison is made between NLGPC and nonlinear deadbeat control (NLDBC) using the same one-step nonlinear components, in order to investigate NLGPC advantages and disadvantages.
Resumo:
There is a growing appreciation among evolutionary biologists that the rate and tempo of molecular evolution might often be altered at or near the time of speciation, i.e. that speciation is in some way a special time for genes. Molecular phylogenies frequently reveal increased rates of genetic evolution associated with speciation and other lines of investigation suggest that various types of abrupt genomic disruption can play an important role in promoting speciation via reproductive isolation. These phenomena are in conflict with the gradual view of molecular evolution that is implicit in much of our thinking about speciation and in the tools of modern biology. This raises the prospect of studying the molecular evolutionary consequences of speciation per se and studying the footprint of speciation as an active force in promoting genetic divergence. Here we discuss the reasons to believe that speciation can play such a role and elaborate on possible mechanisms for accelerated rates of evolution following speciation. We provide an example of how it is possible detect whether accelerated bursts of evolution occur in neutral and/or adaptive regions of genes and discuss the implications of rapid episodes of change for conventional models of molecular evolution. Speciation might often owe more to ephemeral and essentially arbitrary events that cause reproductive isolation than to the gradual and regular tug of natural selection that draws a species into a new niche.
Resumo:
In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.
Resumo:
This letter proposes the subspace-based blind adaptive channel estimation algorithm for dual-rate quasi-synchronous DS/CDMA systems, which can operate at the low-rate (LR) or high-rate (HR) mode. Simulation results show that the proposed blind adaptive algorithm at the LR mode has a better performance than that at the HR mode, with the cost of an increasing computational complexity.
Resumo:
The existing dual-rate blind linear detectors, which operate at either the low-rate (LR) or the high-rate (HR) mode, are not strictly blind at the HR mode and lack theoretical analysis. This paper proposes the subspace-based LR and HR blind linear detectors, i.e., bad decorrelating detectors (BDD) and blind MMSE detectors (BMMSED), for synchronous DS/CDMA systems. To detect an LR data bit at the HR mode, an effective weighting strategy is proposed. The theoretical analyses on the performance of the proposed detectors are carried out. It has been proved that the bit-error-rate of the LR-BDD is superior to that of the HR-BDD and the near-far resistance of the LR blind linear detectors outperforms that of its HR counterparts. The extension to asynchronous systems is also described. Simulation results show that the adaptive dual-rate BMMSED outperform the corresponding non-blind dual-rate decorrelators proposed by Saquib, Yates and Mandayam (see Wireless Personal Communications, vol. 9, p.197-216, 1998).