895 resultados para Acute phase protein
Resumo:
Since 1991, 6 years after the recommendation of universal childhood triple vaccination against measles, mumps and rubella (M + M + R), Switzerland has been confronted with an increasing number of mumps cases affecting both vaccinated and unvaccinated children. The M + M + R vaccine mainly used in the Swiss population after 1986 contains the highly attenuated Rubini strain of mumps virus. We analysed an outbreak of 102 suspected mumps cases by virus isolation, determination of IgM antibodies to mumps virus in 27 acute phase sera, and verification of vaccination histories. Mumps was confirmed by virus isolation in 88 patients, of whom 72 had previously received the Rubini vaccine strain. IgM antibodies to mumps virus were detected in 24/27 acute phase serum samples. A group of 92 subjects from the same geographic area without signs of mumps virus infection served as controls. IgG antibodies to mumps virus and vaccination status were assessed in these children. The vaccination rate in these controls was 61%, with equal seropositivity for unvaccinated and Rubini-vaccinated subjects. These data support other recent reports which indicate an insufficient protective efficacy of current mumps vaccines.
Resumo:
OBJECTIVE The steroidogenic acute regulatory protein (StAR) transports cholesterol to the mitochondria for steroidogenesis. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH) which is characterized by impaired synthesis of adrenal and gonadal steroids causing adrenal insufficiency, 46,XY disorder of sex development (DSD) and failure of pubertal development. Partial loss of StAR activity may cause adrenal insufficiency only. PATIENT A newborn girl was admitted for mild dehydration, hyponatremia, hyperkalemia and hypoglycaemia and had normal external female genitalia without hyperpigmentation. Plasma cortisol, 17OH-progesterone, DHEA-S, androstendione and aldosterone were low, while ACTH and plasma renin activity were elevated, consistent with the diagnosis of primary adrenal insufficiency. Imaging showed normal adrenals, and cytogenetics revealed a 46,XX karyotype. She was treated with fluids, hydrocortisone and fludrocortisone. DESIGN, METHODS AND RESULTS Genetic studies revealed a novel homozygous STAR mutation in the 3' acceptor splice site of intron 4, c.466-1G>A (IVS4-1G>A). To test whether this mutation would affect splicing, we performed a minigene experiment with a plasmid construct containing wild-type or mutant StAR gDNA of exons-introns 4-6 in COS-1 cells. The splicing was assessed on total RNA using RT-PCR for STAR cDNAs. The mutant STAR minigene skipped exon 5 completely and changed the reading frame. Thus, it is predicted to produce an aberrant and shorter protein (p.V156GfsX19). Computational analysis revealed that this mutant protein lacks wild-type exons 5-7 which are essential for StAR-cholesterol interaction. CONCLUSIONS STAR c.466-1A skips exon 5 and causes a dramatic change in the C-terminal sequence of the protein, which is essential for StAR-cholesterol interaction. This splicing mutation is a loss-of-function mutation explaining the severe phenotype of our patient. Thus far, all reported splicing mutations of STAR cause a severe impairment of protein function and phenotype.
Resumo:
The analysis and treatment of hips with healed Legg-Calvé-Perthes disease (LCPD) differs substantially from the treatment in the acute phase of the disease. More specifically, the treating orthopaedic surgeon is often faced with a complex three-dimensional pathomorphology of the hip that is difficult to understand and correct. To date, none of the current classification systems provide a useful decision-making algorithm with regards to the type of surgical intervention necessary to improve hip function in patients with sequelae of LCPD. The conceptual recognition of the femoroacetabular impingement (FAI) and the ability to safely dislocate the hip have revolutionised our diagnostic and therapeutic algorithm for joint-preserving surgery of hips with structural residuals of LCPD. We present a systematic approach to analyse femoral and acetabular pathomorphologic features. The resulting pathomechanisms and the surgical treatment options are presented.
Resumo:
BACKGROUND Oesophageal adenocarcinomas often show resistances to chemotherapy (CTX), therefore, it would be of high interest to better understand the mechanisms of resistance. We examined the expression of heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) in pretherapeutic biopsies of oesophageal adenocarcinomas to assess their potential role in CTX response. METHODS Ninety biopsies of locally advanced adenocarcinomas before platin/5-fluorouracil (FU)-based CTX were investigated by reverse phase protein arrays (RPPAs), immunohistochemistry (IHC) and quantitative RT-PCR. RESULTS CTX response strongly correlated with survival (P=0.001). Two groups of tumours with specific protein expression patterns were identified by RPPA: Group A was characterised by low expression of HSP90, HSP27 and p-HSP27((Ser15, Ser78, Ser82)) and high expression of GRP78, GRP94, HSP70 and HSP60; Group B exhibited the inverse pattern. Tumours of Group A were more likely to respond to CTX, resulting in histopathological tumour regression (P=0.041) and post-therapeutic down-categorisation from cT3 to ypT0-T2 (P=0.040). High HSP60 protein (IHC) and mRNA expression were also associated with tumour down-categorisation (P=0.016 and P=0.004). CONCLUSION Our findings may enhance the understanding of CTX response mechanisms, might be helpful to predict CTX response and might have translational relevance as they highlight the role of potentially targetable cellular stress proteins in the context of CTX response.
Resumo:
While glucocorticoid (GC) administration appears to be beneficial during the acute phase of treatment of neonates at risk of developing chronic lung disease, it is still not clear whether steroid application has an adverse long-term effect on the lung maturation. Thus, the goal of the present work was to analyze GC effects on the pulmonary structure in a rat model where dosage and timing of drug administration were adapted to the therapeutic situation in human neonatology. The animals received daily a maximum of 0.1 mg dexamethasone phosphate per kilogram body weight during the first 4 postnatal days. Investigations were performed at the light microscopic level by means of a digital image analysis system. While there were no differences in the lung architecture between experimental animals and controls on day 4, the earliest time point of observation, we found a widening of airspaces with a concomitant decrease in the alveolar surface area density, representing a loss of parenchymal complexity, on days 10 and 21 in treated rats. On days 36 and 60, however, no alterations in the pulmonary parenchyma could be detected in experimental animals. We conclude from these findings that the GC-induced initial inhibition of development (days 10 and 21) was completely reversed, so that a normal parenchymal architecture and also a normal alveolar surface area density were found in adult rats (days 36 and 60). From the results obtained using the regimen of GC administration described, mimicking more closely the steroid treatment in human neonatology, we conclude that the observed short-term adverse effects on lung development can be fully compensated until adult age.
Resumo:
INTRODUCTION Erythema exsudativum multiforme majus (EEMM) and Stevens-Johnson Syndrome (SJS) are severe cutaneous reaction patterns caused by infections or drug hypersensitivity. The mechanism by which widespread keratinocyte death is mediated by the immune system in EEMM/SJS are still to be elucidated. Here, we characterized the blister cells isolated from a patient with EEMM/SJS overlap and investigated its cause. METHODS Clinical classification of the cutaneous eruption was done according to the consensus definition of severe blistering skin reactions and histological analysis. Common infectious causes of EEMM were investigated using standard clinical techniques. T cell reactivity for potentially causative drugs was assessed by lymphocyte transformation tests (LTT). Lymphocytes isolated from blister fluid were analyzed for their expression of activation markers and cytotoxic molecules using flow cytometry. RESULTS The healthy 58 year-old woman suffered from mild respiratory tract infection and therefore started treatment with the secretolytic drug Ambroxol. One week later, she presented with large palmar and plantar blisters, painful mucosal erosions, and flat atypical target lesions and maculae on the trunc, thus showing the clinical picture of an EEMM/SJS overlap (Fig. 1). This diagnosis was supported by histology, where also eosinophils were found to infiltrate the upper dermis, thus pointing towards a cutaneous adverse drug reaction (cADR). Analysis of blister cells showed that they mainly consisted of CD8+ and CD4+ T cells and a smaller population of NK cells. Both the CD8+ T cells and the NK cells were highly activated and expressed Fas ligand and the cytotoxic molecule granulysin (Fig. 2). In addition, in comparison to NK cells from PBMC, NK cells in blister fluids strongly upregulated the expression of the skin-homing chemokine receptor CCR4 (Fig 4). Surprisingly, the LTT performed on PBMCs in the acute phase was positive for Ambroxol (SI=2.9) whereas a LTT from a healthy but exposed individual did not show unspecific proliferation. Laboratory tests for common infectious causes of EEMM were negative (HSV-1/-2, M. pneumoniae, Parvovirus B19). However, 6 weeks later, specific proliferation to Ambroxol could no longer be observed in the LTT (Fig 4.).
Resumo:
PURPOSE: The present study defines genomic loci underlying coordinate changes in gene expression following retinal injury. METHODS: A group of acute phase genes expressed in diverse nervous system tissues was defined by combining microarray results from injury studies from rat retina, brain, and spinal cord. Genomic loci regulating the brain expression of acute phase genes were identified using a panel of BXD recombinant inbred (RI) mouse strains. Candidate upstream regulators within a locus were defined using single nucleotide polymorphism databases and promoter motif databases. RESULTS: The acute phase response of rat retina, brain, and spinal cord was dominated by transcription factors. Three genomic loci control transcript expression of acute phase genes in brains of BXD RI mouse strains. One locus was identified on chromosome 12 and was highly correlated with the expression of classic acute phase genes. Within the locus we identified the inhibitor of DNA binding 2 (Id2) as a candidate upstream regulator. Id2 was upregulated as an acute phase transcript in injury models of rat retina, brain, and spinal cord. CONCLUSIONS: We defined a group of transcriptional changes associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and candidate regulators that control transcript levels of acute phase genes.
Resumo:
Anti-ADAMTS13 autoantibodies are the main cause of acquired thrombotic thrombocytopenic purpura. Binding of these antibodies to ADAMTS13 eventually results in the formation of antigen-antibody immune complexes. Circulating ADAMTS13-specific immune complexes have been described in acquired thrombotic thrombocytopenic purpura patients, however, the prevalence and persistence of these immune complexes over time has hitherto remained elusive. Here, we analyzed a large cohort of patients with acquired thrombotic thrombocytopenic purpura for the presence of free and complexed anti-ADAMTS13 antibodies. In the acute phase (n=68), 100% of patients had free IgG antibodies and 97% had ADAMTS13-specific immune complexes. In remission (n=28), 75% of patients had free antibodies (mainly IgG) and 93% had ADAMTS13-specific immune complexes. Free antibodies were mainly of subclasses IgG1 and IgG4, whereas IgG4 was by far the most prevalent in ADAMTS13-specific immune complexes. Comparison of ADAMTS13 inhibitor and anti-ADAMTS13 IgG (total and subclasses) antibody titers in acute phase and in remission samples showed a statistically significant decrease in all parameters in remission. Although non-significant, a trend towards reduced or undetectable titers in remission was also observed for ADAMTS13-specific immune complexes of subclasses IgG1, IgG2 and IgG3. For IgG4, no such trend was discernible; IgG4 immune complexes persisted over years, even in patients who had been treated with rituximab and who showed no features suggesting relapse.
Resumo:
Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.
Resumo:
PAX2 is one of nine PAX genes regulating tissue development and cellular differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, cell-lineage specification, migration, and survival. Unattenuated PAX2 has been found in several cancer types. We therefore sought to elucidate the role of PAX2 in ovarian carcinomas. We found that PAX2 was expressed in low-grade serous, clear cell, endometrioid and mucinous cell ovarian carcinomas, which are relatively chemoresistant compared to high grade serous ovarian carcinomas. Four ovarian cancer cell lines, RMUGL (mucinous), TOV21G (clear cell), MDAH-2774 (endometrioid) and IGROV1 (endometrioid), which express high-levels of PAX2, were used to study the function of PAX2. Lentiviral shRNAs targeting PAX2 were used to knock down PAX2 expression in these cell lines. Cellular proliferation and motility assays subsequently showed that PAX2 stable knockdown had slower growth and migration rates. Microarray gene expression profile analysis further identified genes that were affected by PAX2 including the tumor suppressor gene G0S2. Reverse phase protein array (RPPA) data showed that PAX2 knockdown affected several genes that are involved in apoptosis, which supports the fact that downregulation of PAX2 in PAX2-expressing ovarian cancer cells inhibits cell growth. We hypothesize that this growth inhibition is due to upregulation of the tumor suppressor gene G0S2 via induction of apoptosis. PAX2 represents a potential therapeutic target for chemoresistant PAX2-expressing ovarian carcinomas.
Resumo:
The phosphatidylinositol 3-kinase (PI3K) pathway, through its major effector node AKT, is critical for the promotion of cell growth, division, motility and apoptosis evasion. This signaling axis is therefore commonly targeted in the form of mutations and amplifications in a myriad of malignancies. Glycogen synthase kinase 3 (GSK3) was first discovered as the kinase responsible for phosphorylating and inhibiting the activity of glycogen synthase, ultimately antagonizing the storage of glucose as glycogen. Its activity counteracts the effects of insulin in glucose metabolism and AKT has long been recognized as one of the key molecules capable of phosphorylating GSK3 and inhibiting its activity. However, here we demonstrate that GSK3 is required for optimal phosphorylation and activation of AKT in different malignant cell lines, and that this effect is independent of the type of growth factor stimulation and can happen even in basal states. Both GSK3 alpha and GSK3 beta isoforms are necessary for AKT to become fully active, displaying a redundant role in the setting. We also demonstrate that this effect of GSK3 on AKT phosphorylation and full activation is dependent on its kinase activity, since highly specific inhibitors targeting GSK3 catalytic activity also promote a reduction in phosphorylated AKT. Analysis of reverse phase protein array screening of MDA-MB-231 breast cancer cells treated with RNA interference targeting GSK3 unexpectedly revealed an increase in levels of phosphorylated MAPK14 (p38). Treatment with the selective p38 inhibitor SB 202190 rescued AKT activation in that cell line, corroborating the importance of unbiased proteomic analysis in exposing cross-talks between signaling networks and demonstrating a critical role for p38 in the regulation of AKT phosphorylation.
Resumo:
Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15min on and 15min off) starting 45min after middle cerebral artery occlusion and lasting 4h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans.
Resumo:
BACKGROUND AND AIMS Ficolin-2 is an acute phase reactant produced by the liver and targeted to recognize N-acetyl-glucosamine which is present in bacterial and fungal cell walls. We recently showed that ficolin-2 serum levels were significantly higher in CD patients compared to healthy controls. We aimed to evaluate serum ficolin-2 concentrations in CD patients regarding their correlation with endoscopic severity and to compare them with clinical activity, fecal calprotectin, and CRP. METHODS Patients provided fecal and blood samples before undergoing ileo-colonoscopy. Disease activity was scored clinically according to the Harvey-Bradshaw Index (HBI) and endoscopically according to the simplified endoscopic score for CD (SES-CD). Ficolin-2 serum levels and fecal calprotectin levels were measured by ELISA. RESULTS A total of 136 CD patients were prospectively included (mean age at inclusion 41.5±15.4 years, 37.5% females). Median HBI was 3 [2-6] points, median SES-CD was 5 [2-8], median fecal calprotectin was 301 [120-703] μg/g, and median serum ficolin-2 was 2.69 [2.02-3.83] μg/mL. SES-CD correlated significantly with calprotectin (R=0.676, P<0.001), CRP (R=0.458, P<0.001), HBI (R=0.385, P<0.001), and serum ficolin-2 levels (R=0.171, P=0.047). Ficolin-2 levels were higher in CD patients with mild endoscopic disease compared to patients in endoscopic remission (P=0.015) but no difference was found between patients with mild, moderate, and severe endoscopic disease. CONCLUSIONS Ficolin-2 serum levels correlate worse with endoscopic CD activity when compared to fecal calprotectin or CRP.
Resumo:
Post-traumatic sleep-wake disturbances are common after acute traumatic brain injury. Increased sleep need per 24 h and excessive daytime sleepiness are among the most prevalent post-traumatic sleep disorders and impair quality of life of trauma patients. Nevertheless, the relation between traumatic brain injury and sleep outcome, but also the link between post-traumatic sleep problems and clinical measures in the acute phase after traumatic brain injury has so far not been addressed in a controlled and prospective approach. We therefore performed a prospective controlled clinical study to examine (i) sleep-wake outcome after traumatic brain injury; and (ii) to screen for clinical and laboratory predictors of poor sleep-wake outcome after acute traumatic brain injury. Forty-two of 60 included patients with first-ever traumatic brain injury were available for follow-up examinations. Six months after trauma, the average sleep need per 24 h as assessed by actigraphy was markedly increased in patients as compared to controls (8.3 ± 1.1 h versus 7.1 ± 0.8 h, P < 0.0001). Objective daytime sleepiness was found in 57% of trauma patients and 19% of healthy subjects, and the average sleep latency in patients was reduced to 8.7 ± 4.6 min (12.1 ± 4.7 min in controls, P = 0.0009). Patients, but not controls, markedly underestimated both excessive sleep need and excessive daytime sleepiness when assessed only by subjective means, emphasizing the unreliability of self-assessment of increased sleep propensity in traumatic brain injury patients. At polysomnography, slow wave sleep after traumatic brain injury was more consolidated. The most important risk factor for developing increased sleep need after traumatic brain injury was the presence of an intracranial haemorrhage. In conclusion, we provide controlled and objective evidence for a direct relation between sleep-wake disturbances and traumatic brain injury, and for clinically significant underestimation of post-traumatic sleep-wake disturbances by trauma patients.
Resumo:
OBJECTIVE Sleep disruption in the acute phase after stroke has detrimental effects on recovery in both humans and animals. Conversely, the effect of sleep promotion remains unclear. Baclofen (Bac) is a known non-rapid eye movement (NREM) sleep-promoting drug in both humans and animals. The aim of this study was to investigate the effect of Bac on stroke recovery in a rat model of focal cerebral ischemia (isch). METHODS Rats, assigned to three experimental groups (Bac/isch, saline/isch, or Bac/sham), were injected twice daily for 10 consecutive days with Bac or saline, starting 24 h after induction of stroke. The sleep-wake cycle was assessed by EEG recordings and functional motor recovery by single pellet reaching test (SPR). In order to identify potential neuroplasticity mechanisms, axonal sprouting and neurogenesis were evaluated. Brain damage was assessed by Nissl staining. RESULTS Repeated Bac treatment after ischemia affected sleep, motor function, and neuroplasticity, but not the size of brain damage. NREM sleep amount was increased significantly during the dark phase in Bac/isch compared to the saline/isch group. SPR performance dropped to 0 immediately after stroke and was recovered slowly thereafter in both ischemic groups. However, Bac-treated ischemic rats performed significantly better than saline-treated animals. Axonal sprouting in the ipsilesional motor cortex and striatum, and neurogenesis in the peri-infarct region were significantly increased in Bac/isch group. CONCLUSION Delayed repeated Bac treatment after stroke increased NREM sleep and promoted both neuroplasticity and functional outcome. These data support the hypothesis of the role of sleep as a modulator of poststroke recovery.