961 resultados para Actuation control technique
Resumo:
We propose an accurate technique for obtaining highly collimated beams, which also allows testing the collimation degree of a beam. It is based on comparing the period of two different self-images produced by a single diffraction grating. In this way, variations in the period of the diffraction grating do not affect to the measuring procedure. Self-images are acquired by two CMOS cameras and their periods are determined by fitting the variogram function of the self-images to a cosine function with polynomial envelopes. This way, loss of accuracy caused by imperfections of the measured self-images is avoided. As usual, collimation is obtained by displacing the collimation element with respect to the source along the optical axis. When the period of both self-images coincides, collimation is achieved. With this method neither a strict control of the period of the diffraction grating nor a transverse displacement, required in other techniques, are necessary. As an example, a LED considering paraxial approximation and point source illumination is collimated resulting a resolution in the divergence of the beam of σ φ = ± μrad.
Resumo:
Short-term changes in sea surface conditions controlling the thermohaline circulation in the northern North Atlantic are expected to be especially efficient in perturbing global climate stability. Here we assess past variability of sea surface temperature (SST) in the northeast Atlantic and Norwegian Sea during Marine Isotope Stage (MIS) 2 and, in particular, during the Last Glacial Maximum (LGM). Five high-resolution SST records were established on a meridional transect (53°N-72°N) to trace centennial-scale oscillations in SST and sea-ice cover. We used three independent computational techniques (SIMMAX modern analogue technique, Artificial Neural Networks (ANN), and Revised Analog Method (RAM)) to reconstruct SST from planktonic foraminifer census counts. SIMMAX and ANN reproduced short-term SST oscillations of similar magnitude and absolute levels, while RAM, owing to a restrictive analog selection, appears less suitable for reconstructing "cold end" SST. The SIMMAX and ANN SST reconstructions support the existence of a weak paleo-Norwegian Current during Dansgaard-Oeschger (DO) interstadials number 4, 3, 2, and 1. During the LGM, two warm incursions of 7°C water to occurred in the northern North Atlantic but ended north of the Iceland Faroe Ridge. A rough numerical estimate shows that the near-surface poleward heat transfer from 53° across the Iceland-Faroe Ridge up to to 72° N dropped to less than 60% of the modern value during DO interstadials and to almost zero during DO stadials. Summer sea ice was generally confined to the area north of 70°N and only rarely expanded southward along the margins of continental ice sheets. Internal LGM variability of North Atlantic (>40°N) SST in the GLAMAP 2000 compilation (Sarnthein et al., 2003, doi:10.1029/2002PA000771; Pflaumann et al., 2003, doi:10.1029/2002PA000774) indicates maximum instability in the glacial subpolar gyre and at the Iberian Margin, while in the Nordic Seas, SST was continuously low.
Resumo:
The real-time optimization of large-scale systems is a difficult problem due to the need for complex models involving uncertain parameters and the high computational cost of solving such problems by a decentralized approach. Extremum-seeking control (ESC) is a model-free real-time optimization technique which can estimate unknown parameters and can optimize nonlinear time-varying systems using only a measurement of the cost function to be minimized. In this thesis, we develop a distributed version of extremum-seeking control which allows large-scale systems to be optimized without models and with minimal computing power. First, we develop a continuous-time distributed extremum-seeking controller. It has three main components: consensus, parameter estimation, and optimization. The consensus provides each local controller with an estimate of the cost to be minimized, allowing them to coordinate their actions. Using this cost estimate, parameters for a local input-output model are estimated, and the cost is minimized by following a gradient descent based on the estimate of the gradient. Next, a similar distributed extremum-seeking controller is developed in discrete-time. Finally, we consider an interesting application of distributed ESC: formation control of high-altitude balloons for high-speed wireless internet. These balloons must be steered into a favourable formation where they are spread out over the Earth and provide coverage to the entire planet. Distributed ESC is applied to this problem, and is shown to be effective for a system of 1200 ballons subjected to realistic wind currents. The approach does not require a wind model and uses a cost function based on a Voronoi partition of the sphere. Distributed ESC is able to steer balloons from a few initial launch sites into a formation which provides coverage to the entire Earth and can maintain a similar formation as the balloons move with the wind around the Earth.
Resumo:
This research presents a new design of an adjustable suture that could provide a better intraocular pressure (IOP) control in the post treatment of trabeculectomy surgery and limit associated complication with the current suturing techniques. A better control in tension suture brings a great deal of advantages to this surgical technique compared with the traditional adjustable suture. A length adjustment can be added in advance to a 10-0 nylon suture which enables suture tension to be released during the postoperative period of trabeculectomy surgery. This adjustment has a D-ring geometry made of 10-0 nylon suture adhered to a 10-0 nylon surgical suture which is used to close the scalar flap. The D ring was adhered with about 180 microdroplet of Loctite 4311that was found to form a strong joint to connect the D ring to the main 10-0 nylon suture and strong enough to carry the added tension instead after cutting the central suture between the two joints of the D ring. The geometry of adjustment is the key factor of maintaining the IOP at the normal range and keeping the scleral flap tight enough and secure so that aqueous humor continues to percolate under the subconjunctiva. It has been found that a 365, and 450 µm length extensions can release suture tension postoperatively and relieve the intraocular pressure within the eye by 33, and 66% respectively. The fabrication process of the new adjustable suture was divided into two steps: fabrication of micro jig and forming microdroplets. A micro jig was fabricated in order to form and bond a precise length extension to the new design of the adjustable suture. In addition, a new liquid separation technique has been followed in this study in order to generate micro adhesive droplets as small as 50µm for bonding the new adjustable suture structure.
Resumo:
Plantaginis Semen is commonly used in traditional medicine to treat edema, hypertension, and diabetes. The commercially available Plantaginis Semen in China mainly comes from three species. To clarify the chemical composition and distinct different species of Plantaginis Semen, we established a metabolite profiling method based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. A total of 108 compounds, including phenylethanoid glycosides, flavonoids, guanidine derivatives, terpenoids, organic acids, and fatty acids, were identified from Plantago asiatica L., P. depressa Willd., and P. major L. Results showed significant differences in chemical components among the three species, particularly flavonoids. This study is the first to provide a comprehensive chemical profile of Plantaginis Semen, which could be involved into the quality control, medication guide, and developing new drug of Plantago seeds.
Resumo:
Oncological patients are submitted to invasive exams in order to obtain an accurate diagnosis; these procedures may cause maladaptative reactions (fear, anxiety and pain). Particularly in breast cancer, the most common diagnose technique is the incisional biopsy. Most of the patients are unaware about the procedure and for that reason they may focus their thoughts on possible events such as pain, bleeding, the anesthesia, or the later surgical wound care. Anxiety and pain may provoke physiological, behavioral and emotional complications, and because of this reason, the Behavioral Medicine trained psychologist takes an active role before and after the biopsy. The aim of this study was to evaluate the effect of a cognitive-behavioral program to reduce anxiety in women submitted to incisional biopsy for the first time. There were 10 participants from the Hospital Juárez de México, Oncology service; all of them were treated as external patients. The intervention program focused in psycho-education and passive relaxation training using videos, tape-recorded instructions and pamphlets. Anxiety measures were performed using the IDARE-State inventory, and a visual-analogue scale of anxiety (EEF-A), and the measurement of blood pressure and heart rate). Data were analyzed both intrasubject and intersubject using the Wilcoxon test (p≤0.05). The results show a reduction in anxiety (as in punctuation as in ranges) besides, a reduction in the EEF-A.
Resumo:
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets,high amplitude EM pulses propagate away from the interaction point and are transported along anystalks and wires attached to the target. The propagation of these high amplitude pulses along a thinwire connected to a laser irradiated target was diagnosed via the proton radiography technique,measuring a pulse duration of 20 ps and a pulse velocity close to the speed of light. The strongelectric field associated with the EM pulse can be exploited for controlling dynamically the protonbeams produced from a laser-driven source. Chromatic divergence control of broadband laser drivenprotons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supportingwire around the proton beam axis to create a helical coil structure. In addition to providingfocussing and energy selection, the technique has the potential to post-accelerate the transiting protonsby the longitudinal component of the curved electric field lines produced by the helical coil lens.
Resumo:
The biodistribution of sodium pertechnetate, the most used radiopharmaceutical in nuclear medicine, has not been studied in details after bariatric surgery. The objective was to investigate the effect of Roux-en-Y gastric bypass (RYGB) on biodistribution of sodium pertechnetate (Na99mTc-) in organs and tissues of rats. Methods: Twelve rats were randomly divided into two groups of 6 animals each. The RYGB group rats were submitted to the Roux-en-Y gastric bypass and the control group rats were not operated. After 15 days, all rats were injected with 0.1mL of Na99mTc- via orbital plexus with average radioactivity of 0.66 MBq. After 30 minutes, liver, stomach, thyroid, heart, lung, kidney and femur samples were harvested, weighed and percentage of radioactivity per gram (%ATI/g) of each organ was determined by gama counter Wizard Perkin-Elmer. We applied the Student t test for statistical analysis, considering p<0.05 as significant. Results: Significant reduction in mean %ATI/g was observed in the liver, stomach and femur in the RYGB group animals, compared with the control group rats (p<0.05). In other organs no significant difference in %ATI/g was observed between the two groups. Conclusion: This work contributes to the knowledge that the bariatric surgery RYGB modifies the pattern of biodistribution of Na99mTc
Resumo:
Exhaust emissions from diesel engines are a substantial source of air pollution in this country. In recognition of this fact, the Environmental Protection Agency has issued strict new regulations due to take effect -in 1991 and 1994 that will drastically reduce the amount of some pollutants these engines will be allowed to emit. The technology is not currently available to produce diesel engines that can meet these regulations without large penalties in engine performance and efficiency. One technique that offers promise of being able to reduce emissions from both existing engines and new engines is alcohol fumigation.
Resumo:
Hallux rígidus (HR) affects the first metatarsophalangeal joint (MTPJ) between 35% and 60% of the population over 65 years and there are multiple ways of treatment. Depending on the radiological stage where you find the deformity determines the procedure to be performed; in the early stages cheilectomy techniques and corrective osteotomy is performed while the more advanced ratings, the surgeon chooses destructive techniques considered as arthrodesis and arthroplasty. This final of degree project aims to focus on 1 MTPJ destructive techniques to clarify which of the procedures generates better results by a number of parameters; outcomes of the American Orthopaedic Foot scale and Ankle Society Hallux metatarsophalangeal Interphalangeal-scale (AOFAS), range of motion (ROM) of the 1ºAMTF, radiological classification. As for the implant arthroplasty technique, this article offers information on material and design that generates better relating to patient characteristics such as age, inflammatory joint diseases, viability and durability of the implant results. The conclusion from this review is that the values obtained in the arthrodesis according AOFAS decrease due to loss of mobility, but both techniques have similar values of effectiveness and concludes with the decision that the technique used is determined taking into account various factors and patient characteristics. Keywords: Hallux rígidus; (Hallux Rígidus) and surgery treatment; Hallux Rígidus arthrodesis; Hallux Rígidus arthroplasty; Hallux Rígidus (arthroplasty and arthrodesis).
Resumo:
The aim of this paper is to provide an efficient control design technique for discrete-time positive periodic systems. In particular, stability, positivity and periodic invariance of such systems are studied. Moreover, the concept of periodic invariance with respect to a collection of boxes is introduced and investigated with connection to stability. It is shown how such concept can be used for deriving a stabilizing state-feedback control that maintains the positivity of the closed-loop system and respects states and control signals constraints. In addition, all the proposed results can be efficiently solved in terms of linear programming.
Resumo:
Metalorganic chemical vapor deposition is examined as a technique for growing compound semiconductor structures. Material analysis techniques for characterizing the quality and properties of compound semiconductor material are explained and data from recent commissioning work on a newly installed reactor at the University of Illinois is presented.
Resumo:
Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70\% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.
Resumo:
The biodistribution of sodium pertechnetate, the most used radiopharmaceutical in nuclear medicine, has not been studied in details after bariatric surgery. The objective was to investigate the effect of Roux-en-Y gastric bypass (RYGB) on biodistribution of sodium pertechnetate (Na99mTc-) in organs and tissues of rats. Methods: Twelve rats were randomly divided into two groups of 6 animals each. The RYGB group rats were submitted to the Roux-en-Y gastric bypass and the control group rats were not operated. After 15 days, all rats were injected with 0.1mL of Na99mTc- via orbital plexus with average radioactivity of 0.66 MBq. After 30 minutes, liver, stomach, thyroid, heart, lung, kidney and femur samples were harvested, weighed and percentage of radioactivity per gram (%ATI/g) of each organ was determined by gama counter Wizard Perkin-Elmer. We applied the Student t test for statistical analysis, considering p<0.05 as significant. Results: Significant reduction in mean %ATI/g was observed in the liver, stomach and femur in the RYGB group animals, compared with the control group rats (p<0.05). In other organs no significant difference in %ATI/g was observed between the two groups. Conclusion: This work contributes to the knowledge that the bariatric surgery RYGB modifies the pattern of biodistribution of Na99mTc
Resumo:
Human standing posture is inherently unstable. The postural control system (PCS), which maintains standing posture, is composed of the sensory, musculoskeletal, and central nervous systems. Together these systems integrate sensory afferents and generate appropriate motor efferents to adjust posture. The PCS maintains the body center of mass (COM) with respect to the base of support while constantly resisting destabilizing forces from internal and external perturbations. To assess the human PCS, postural sway during quiet standing or in response to external perturbation have frequently been examined descriptively. Minimal work has been done to understand and quantify the robustness of the PCS to perturbations. Further, there have been some previous attempts to assess the dynamical systems aspects of the PCS or time evolutionary properties of postural sway. However those techniques can only provide summary information about the PCS characteristics; they cannot provide specific information about or recreate the actual sway behavior. This dissertation consists of two parts: part I, the development of two novel methods to assess the human PCS and, part II, the application of these methods. In study 1, a systematic method for analyzing the human PCS during perturbed stance was developed. A mild impulsive perturbation that subjects can easily experience in their daily lives was used. A measure of robustness of the PCS, 1/MaxSens that was based on the inverse of the sensitivity of the system, was introduced. 1/MaxSens successfully quantified the reduced robustness to external perturbations due to age-related degradation of the PCS. In study 2, a stochastic model was used to better understand the human PCS in terms of dynamical systems aspect. This methodology also has the advantage over previous methods in that the sway behavior is captured in a model that can be used to recreate the random oscillatory properties of the PCS. The invariant density which describes the long-term stationary behavior of the center of pressure (COP) was computed from a Markov chain model that was applied to postural sway data during quiet stance. In order to validate the Invariant Density Analysis (IDA), we applied the technique to COP data from different age groups. We found that older adults swayed farther from the centroid and in more stochastic and random manner than young adults. In part II, the tools developed in part I were applied to both occupational and clinical situations. In study 3, 1/MaxSens and IDA were applied to a population of firefighters to investigate the effects of air bottle configuration (weight and size) and vision on the postural stability of firefighters. We found that both air bottle weight and loss of vision, but not size of air bottle, significantly decreased balance performance and increased fall risk. In study 4, IDA was applied to data collected on 444 community-dwelling elderly adults from the MOBILIZE Boston Study. Four out of five IDA parameters were able to successfully differentiate recurrent fallers from non-fallers, while only five out of 30 more common descriptive and stochastic COP measures could distinguish the two groups. Fall history and the IDA parameter of entropy were found to be significant risk factors for falls. This research proposed a new measure for the PCS robustness (1/MaxSens) and a new technique for quantifying the dynamical systems aspect of the PCS (IDA). These new PCS analysis techniques provide easy and effective ways to assess the PCS in occupational and clinical environments.