993 resultados para Accumulation rate, marine organic carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cretaceous sediments from DSDP Site 530 have been analyzed for organic carbon isotopic composition. The d13C values in the sediments decrease from -22.7 per mil to -27.5 per mil in the following order: light-olive green mudstone/claystone, dark brown-red mudstone/siltstone/claystone, and black shale. This large range is primarily the result of variation in the relative amounts of terrestrial organic carbon superimposed on that derived from marine organisms. The black shales have an average d13C value of -25.9 per mil (range is from -23.7 per mil to -27.5 per mil). These values indicate that they originated primarily in terrigenous organic materials. The average d13C value present throughout the Cretaceous suggests that a large amount of terrestrial organic matter was supplied into this paleoenvironment, except during the Campanian, when an average d13C of -23.9 per mil is found near the marine end of the range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg/L (mean: 9.6 mg/L). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km**3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.