974 resultados para Accumulation of snow
Resumo:
Ice coring and snow cover observations have been carried out at 3 sites in Nordaustlandet, Svalbard since 1995. The results of stratigraphic analyses, and chemical and d18O analyses from Vestfonna and Austfonna cores are presented here. The results from these sites show that most of the chemical constituents contained in the initial snow cover still remained in the ice cores, although re-distribution of them by melt water percolation had occurred. Anthropogenic increases in trace metals, sulfate and nitrate since about 1950 are detected. This suggests that ice-core chemistry records from Nordaustlandet, Svalbard, can be useful to reconstruct past atmospheric conditions. In addition to chemical records, records, that correlate well with the temperature records in Svalbard, can be used to reconstruct past temperature changes.
Resumo:
The sensitivity of brightness temperature (T(B)) at 6.9, 10.7, and 18.7 GHz from Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations is investigated over five winter seasons (2002-2007) on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada. The T(B) measurements are compared to ice thicknesses obtained with a previously validated thermodynamic lake ice model. Lake ice thickness is found to explain much of the increase of T(B) at 10.7 and 18.7 GHz. T(B) acquired at 18.7 GHz (V-pol) and 10.7 GHz (H-pol) shows the strongest relation with simulated lake ice thickness over the period of study (R**2 > 0.90). A comparison of the seasonal evolution of T(B) for a cold winter (2003-2004) and a warm winter (2005-2006) reveals that the relationship between T(B) and ice growth is stronger in the cold winter (2003-2004). Overall, this letter shows the high sensitivity of T(B) to ice growth and, thus, the potential of AMSR-E mid-frequency channels to estimate ice thickness on large northern lakes.
Resumo:
A new snow-soil-vegetation-atmosphere transfer (Snow-SVAT) scheme, which simulates the accumulation and ablation of the snow cover beneath a forest canopy, is presented. The model was formulated by coupling a canopy optical and thermal radiation model to a physically-based multi-layer snow model. This canopy radiation model is physically-based yet requires few parameters, so can be used when extensive in-situ field measurements are not available. Other forest effects such as the reduction of wind speed, interception of snow on the canopy and the deposition of litter were incorporated within this combined model, SNOWCAN, which was tested with data taken as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) international collaborative experiment. Snow depths beneath four different canopy types and at an open site were simulated. Agreement between observed and simulated snow depths was generally good, with correlation coefficients ranging between r^2=0.94 and r^2=0.98 for all sites where automatic measurements were available. However, the simulated date of total snowpack ablation generally occurred later than the observed date. A comparison between simulated solar radiation and limited measurements of sub-canopy radiation at one site indicates that the model simulates the sub-canopy downwelling solar radiation early in the season to within measurement uncertainty.
Resumo:
Essery, RLH & JW, Pomeroy, (2004). Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations. Journal of Hydrometeorology, 5, 735-744.
Resumo:
A present day control integration performed with the Hadley Centre's coupled climate model HadGEM1.2 experiences a large salinity bias in the Arctic Ocean when compared to in situ observations. Such a large salinity bias may have implications for both Arctic and Atlantic Ocean circulation. Large differences are seen between the runoff in HadGEM and the observations from the Global Runoff Data Centre, in particular in the Lena catchment, which could account for this salinity bias. We suggest that this discrepancy in runoff is, at least in part, due to a lack of snow accumulation in the model. The model climatology is very different to those obtained by remote sensing, such as the Global Snow Water Equivalent Climatology (NSIDC) and GlobSnow (ESA).
Resumo:
Samples of snow and firn from accumulation zones on Clark, Commonwealth, Blue and Victoria Upper Glaciers in the McMurdo Dry Valleys (similar to 77-78 degrees S, 161-164 degrees E), Antarctica, are evaluated chemically and isotopically to determine the relative importance of local (site-specific) factors vs regional-scale influences in defining glaciochemistry. Spatial variation in snow and firn chemistry confirms documented trends within individual valleys regarding major-ion deposition relative to elevation and to distance from the coast. Sodium and methylsulfonate (MS-), for example, follow a decreasing gradient with distance from the coast along the axis of Victoria Valley (350-119 mu gL(-1) for Na+; 33-14 mu gL(-1) for MS-); a similar pattern exists between Commonwealth and Newall Glaciers in the Asgaard Range. When comparing major-ion concentrations (e.g. Na-+,Na- MS-, Ca2+) or trace metals (e.g. Al, Fe) among different valleys, however, site-specific exposures to marine and local terrestrial chemical sources play a dominant role. Because chemical signals at all sites respond to particulates with varying mixtures of marine and terrestrial sources, each of these influences on site glaciochemistry must be considered when drawing temporal climate inferences on regional scales.
Resumo:
Stable isotope ratios of nitrate preserved in deep ice cores are expected to provide unique and valuable information regarding paleoatmospheric processes. However, due to the post-depositional loss of nitrate in snow, this information may be erased or significantly modified by physical or photochemical processes before preservation in ice. We investigated the role of solar UV photolysis in the post-depositional modification of nitrate mass and stable isotoperatios at Dome C, Antarctica, during the austral summer of 2011/2012. Two 30 cm snow pits were filled with homogenized drifted snow from the vicinity of the base. One of these pits was covered with a plexiglass plate that transmits solar UV radiation, while the other was covered with a different plexiglass plate having a low UV transmittance. Samples were then collected from each pit at a 2–5 cm depth resolution and a 10-day frequency. At the end of the season, acomparable nitrate mass loss was observed in both pits for the top-level samples (0–7 cm) attributed to mixing with the surrounding snow. After excluding samples impacted by the mixing process, we derived an average apparent nitrogen isotopic fractionation (15" app/of role in driving the isotopic fractionation of nitrate in snow.We have estimated a purely photolytic nitrogen isotopic fractionation (15"photo) of -55.8 12.0 ‰ from the difference in the derived apparent isotopic ractionations of the two experimental fields, as both pits were exposed to similar physical processes except exposure to solar UV. This value is in close agreement with the 15" photo value of -47.9 6.8 ‰ derived in a laboratory experiment simulated for Dome C conditions (Berhanu et al., 2014). We have also observed an insensitivity of 15" with depth in the snowpack under the given experimental setup. This is due to the uniform attenuation of incoming solar UV by snow, as 15" is strongly dependent on the spectral distribution of the incoming light flux. Together with earlier work, the results presented here represent a strong body of evidence that solar UV photolysis is the most relevant post-depositional process modifying the stable isotope ratios of snow nitrate at low-accumulation sites, where many deep ice cores are drilled. Nevertheless, modeling the loss of nitrate in snow is still required before a robust interpretation of ice core records can be provided.
Resumo:
As a result of intensive field activities carried out by several nations over the past 15 years, a set of accumulation measurements for western Dronning Maud Land, Antarctica, was collected, based on firn-core drilling and snow-pit sampling. This new information was supplemented by earlier data taken from the literature, resulting in 111 accumulation values. Using Geographical Information Systems software, a first region-wide mean annual snow-accumulation field was derived. In order to define suitable interpolation criteria, the accumulation records were analyzed with respect to their spatial autocorrelation and statistical properties. The resulting accumulation pattern resembles well known characteristics such as a relatively wet coastal area with a sharp transition to the dry interior, but also reveals complex topographic effects. Furthermore, this work identifies new high-return shallow drilling sites by uncovering areas of insufficient sampling density.
Resumo:
The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO4-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.
Resumo:
The ice cap on Berkner Island is grounded on bedrock within the Filchner-Ronne Ice Shelf and is, therefore, expected to be a well-suited place to retrieve long-term ice-core records reflecting the environmental situation of the Weddell Sea region. Shallow firn cores were drilled to 11 m at the two main summits of Berkner Island and analysed in high depth resolution for electrical d.c. conductivity (ECM), stable isotopes, chloride, sulphate, nitrate and methane-sulphonate (MSA). From the annual layering of dD and non-sea-salt (nss) sulphate, a mean annual snow accumulation of 26.6 cm water at the north dome and 17.4 cm water at the south dome are obtained. As a result of ineffective wind scouring indicated by a relatively low near-surface snow density, regular annual cycles are found for all species at least in the upper 4-5 m. Post depositional changes are responsible for a substantial decrease of the seasonal dD and nitrate amplitude as well as for considerable migration of the MSA signal operating below a depth of 3-4 m. The mean chemical and isotopic firn properties at the south dome correspond to the situation on the Filchner-Ronne Ice shelf at a comparable distance to the coast, whereas the north dome is found to be more influenced by maritime air masses. Persistent high sea-salt levels in winter snow at Berkner Island heavily obscure the determination of nss sulphate probably due to sulphate fractionation in the Antartic sea-salt aerosols. Estimated time-scales predict ages at 400 m depth to be ca. 2000 years for the north and ca. 3000 years for the south dome. Pleistocene ice is expected in the bottom 200 and 300 m, respectively.
Particulate matter and organic compounds in snow, ice, and water of the Lazarev and Cooperation Seas
Resumo:
Integrated studies of particulate matter and organic compounds in surface waters and the snow-ice cover by means of geochemical (concentrations of the particulate matter, Corg, hydrocarbons, lipids, and chlorophyll a) and optical techniques were performed in the Southern Ocean and in the East Atlantic Ocean along the vessel's route: Africa - Antarctica - Africa - St. Petersburg. Correlations between studied compounds were found. It was shown that supply of pollutants affects not only concentrations but also proportions of the considered compounds. New data were obtained on the processes of accumulation of particulate matter and organic compounds under ice formation.