957 resultados para 923
Resumo:
Modern food production is a complex, globalized system in which what we eat and how it is produced are increasingly disconnected. This thesis examines some of the ways in which global trade has changed the mix of inputs to food and feed, and how this affects food security and our perceptions of sustainability. One useful indicator of the ecological impact of trade in food and feed products is the Appropriated Ecosystem Areas (ArEAs), which estimates the terrestrial and aquatic areas needed to produce all the inputs to particular products. The method is introduced in Paper I and used to calculate and track changes in imported subsidies to Swedish agriculture over the period 1962-1994. In 1994, Swedish consumers needed agricultural areas outside their national borders to satisfy more than a third of their food consumption needs. The method is then applied to Swedish meat production in Paper II to show that the term “Made in Sweden” is often a misnomer. In 1999, almost 80% of manufactured feed for Swedish pigs, cattle and chickens was dependent on imported inputs, mainly from Europe, Southeast Asia and South America. Paper III examines ecosystem subsidies to intensive aquaculture in two nations: shrimp production in Thailand and salmon production in Norway. In both countries, aquaculture was shown to rely increasingly on imported subsidies. The rapid expansion of aquaculture turned these countries from fishmeal net exporters to fishmeal net importers, increasingly using inputs from the Southeastern Pacific Ocean. As the examined agricultural and aquacultural production systems became globalized, levels of dependence on other nations’ ecosystems, the number of external supply sources, and the distance to these sources steadily increased. Dependence on other nations is not problematic, as long as we are able to acknowledge these links and sustainably manage resources both at home and abroad. However, ecosystem subsidies are seldom recognized or made explicit in national policy or economic accounts. Economic systems are generally not designed to receive feedbacks when the status of remote ecosystems changes, much less to respond in an ecologically sensitive manner. Papers IV and V discuss the problem of “masking” of the true environmental costs of production for trade. One of our conclusions is that, while the ArEAs approach is a useful tool for illuminating environmentally-based subsidies in the policy arena, it does not reflect all of the costs. Current agricultural and aquacultural production methods have generated substantial increases in production levels, but if policy continues to support the focus on yield and production increases alone, taking the work of ecosystems for granted, vulnerability can result. Thus, a challenge is to develop a set of complementary tools that can be used in economic accounting at national and international scales that address ecosystem support and performance. We conclude that future resilience in food production systems will require more explicit links between consumers and the work of supporting ecosystems, locally and in other regions of the world, and that food security planning will require active management of the capacity of all involved ecosystems to sustain food production.
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
Singularities of robot manipulators have been intensely studied in the last decades by researchers of many fields. Serial singularities produce some local loss of dexterity of the manipulator, therefore it might be desirable to search for singularityfree trajectories in the jointspace. On the other hand, parallel singularities are very dangerous for parallel manipulators, for they may provoke the local loss of platform control, and jeopardize the structural integrity of links or actuators. It is therefore utterly important to avoid parallel singularities, while operating a parallel machine. Furthermore, there might be some configurations of a parallel manipulators that are allowed by the constraints, but nevertheless are unreachable by any feasible path. The present work proposes a numerical procedure based upon Morse theory, an important branch of differential topology. Such procedure counts and identify the singularity-free regions that are cut by the singularity locus out of the configuration space, and the disjoint regions composing the configuration space of a parallel manipulator. Moreover, given any two configurations of a manipulator, a feasible or a singularity-free path connecting them can always be found, or it can be proved that none exists. Examples of applications to 3R and 6R serial manipulators, to 3UPS and 3UPU parallel wrists, to 3UPU parallel translational manipulators, and to 3RRR planar manipulators are reported in the work.
Resumo:
Die Messung der Elektroproduktion geladener Pionen in der Nähe der Produktionsschwelle ermöglicht die Bestimmung des axialen Formfaktors des Nukleons G_A(Q²) und aus seinem Verlauf die Extraktion der axialen Masse M_A. Diese Größe kann im Rahmen der chiralen Störungstheorie vorhergesagt werden, so daß ihre experimentelle Bestimmung eine Überprüfung der theoretischen Beschreibung des Nukleons erlaubt. Im Rahmen dieser Arbeit wurden die bereits am Institut für Kernphysik der Universität Mainz in der A1-Kollaboration durchgeführten Messungen der Reaktion H(e,e'Pi+)n bei einer Schwerpunktsenergie von W = 1125 MeV und einem Vierer- impulsübertrag Q² von 0.117, 0.195 und 0.273 (GeV/c)² durch eine weitere Messung bei Q² = 0.058 (GeV/c)² ergänzt. In einer zweiten Meßperiode wurden zusätzlich die Messungen für die Q²-Werte von 0.117 und 0.195 (GeV/c)² wiederholt. Für alle Q²-Werte wurden Daten bei mindestens drei verschiedenen Werten der Polarisation des virtuellen Photons genommen, so daß für alle Messungen eine Rosenbluthseparation durchgeführt werden konnte, um den transversalen und den longitudinalen Anteil des Wirkungsquerschnitts zu bestimmen. Das Ergebnis für Q² = 0.195 (GeV/c)² stimmt im Rahmen der Fehler mit dem alten Ergebnis überein, für Q² = 0.117 (GeV/c)² ergibt sich eine deutliche Abweichung des longitudinalen Anteils. Das Ergebnis für Q² = 0.058 (GeV/c)² liegt unter der aus den alten Messungen gewonnenen Vorhersage. Der induzierte pseudoskalare Formfaktor des Nukleons G_P(Q²) kann ebenfalls in der Pionelektroproduktion bestimmt werden, wenn die Messung bei einer Schwerpunktsenergie nur wenige MeV über der Produktionsschwelle stattfindet. Eine solche Messung erfordert den Nachweis von Pionen mit kinetischen Energien unter 35 MeV, für den die in der A1-Kollaboration vorhandenen Spektrometer nicht geeignet sind. Im apparativen Teil der Arbeit wurde daher ein Szintillatorhodoskop für ein dediziertes Pionspektrometer mit kurzer Weglänge gebaut und getestet. Außerdem wurden für dieses sogenannte Short-Orbit-Spektrometer drei Kollimatoren entworfen und eingebaut.
Resumo:
Das Auftreten von Psychostimulantien im Straßenverkehr und eine Beeinträchtigung der Fahrtüchtigkeit durch diese spielt in Deutschland zunehmend eine wichtige Rolle. Das Ziel der hier vorliegenden Arbeit war es retrospektiv die dokumentierten Ausfallserscheinungen von Personen unter Einfluss von Amphetaminderivaten anhand von ärztlichen Untersuchungsbögen, die bei polizeilich angeordneten Blutentnahmen ausgefüllt werden, des Zeitraums 2001 bis 2005 in Rheinland-Pfalz zu untersuchen. Aufgrund der hohen Fallzahlen konnten sehr strenge Auswahlkriterien angewandt werden, sodass lediglich reine Amphetaminderivat-Intoxikationen (Amphetamin, Methamphetamin, MDA, MDMA, MDE, MBDB) bei 923 Personen untersucht werden konnten. Es zeigten sich als verkehrsrelevante Beeinflussung die Erweiterung der Pupille mit einer geringeren Lichtreagibilität, eine Verlängerung des Drehnachnystagmus sowie eine Unsicherheit beim Rombergtest. Eine Dosis-Wirkungs-Beziehung konnte lediglich bei der Pupillenweite ansatzweise gefunden werden. Bei MDMA zeigte sich ein deutlich stärkerer Einfluss auf die Pupillenweitenregulation als bei Amphetamin. Die zur Detektion von alkoholbedingten Ausfallserscheinungen sinnvollen Gleichgewichts- und Koordinationstests waren im Falle der hier betrachteten Psychstimulantien nicht aussagekräftig. Es erscheint empfehlenswert die durchgeführten Untersuchungen mit Hilfe von einheitlichen Lichtverhältnissen und festgelegten Untersuchungsprozedere zu standardisieren ggf. auch durch die Einführung der Videookulographie. Die Einführung eines Reaktionstests sollte in Erwägung gezogen werden.
Resumo:
BACKGROUND: Mechanical pain sensitivity is assessed in every patient with pain, either by palpation or by quantitative pressure algometry. Despite widespread use, no studies have formally addressed the usefulness of this practice for the identification of the source of pain. We tested the hypothesis that assessing mechanical pain sensitivity distinguishes damaged from healthy cervical zygapophysial (facet) joints. METHODS: Thirty-three patients with chronic unilateral neck pain were studied. Pressure pain thresholds (PPTs) were assessed bilaterally at all cervical zygapophysial joints. The diagnosis of zygapophysial joint pain was made by selective nerve blocks. Primary analysis was the comparison of the PPT between symptomatic and contralateral asymptomatic joints. The secondary end points were as follows: differences in PPT between affected and asymptomatic joints of the same side of patients with zygapophysial joint pain; differences in PPT at the painful side between patients with and without zygapophysial joint pain; and sensitivity and specificity of PPT for 2 different cutoffs (difference in PPT between affected and contralateral side by 1 and 30 kPa, meaning that the test was considered positive if the difference in PPT between painful and contralateral side was negative by at least 1 and 30 kPa, respectively). The PPT of patients was also compared with the PPT of 12 pain-free subjects. RESULTS: Zygapophysial joint pain was present in 14 patients. In these cases, the difference in mean PPT between affected and contralateral side (primary analysis) was −6.2 kPa (95% confidence interval: −19.5 to 7.2, P = 0.34). In addition, the secondary analyses yielded no statistically significant differences. For the cutoff of 1 kPa, sensitivity and specificity of PPT were 67% and 16%, respectively, resulting in a positive likelihood ratio of 0.79 and a diagnostic confidence of 38%. When the cutoff of 30 kPa was considered, the sensitivity decreased to only 13%, whereas the specificity increased to 95%, resulting in a positive likelihood ratio of 2.53 and a diagnostic confidence of 67%. The PPT was significantly lower in patients than in pain-free subjects (P < 0.001). CONCLUSIONS: Assessing mechanical pain sensitivity is not diagnostic for cervical zygapophysial joint pain. The finding should stimulate further research into a diagnostic tool that is widely used in the clinical examination of patients with pain.
Resumo:
The aim of the present study was to assess cognitive, affective, and motor long-term sequelae after acquired focal pediatric cerebellar lesions.
Resumo:
The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in thyroid prohormone processing initiated in the follicular lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through, e.g., ECM degradation. In this study, immunofluorescence and biochemical data from subcellular fractionation revealed that cathepsin B, in its single- and two-chain forms, is localized to endo-lysosomes in the papillary thyroid carcinoma cell line KTC-1 and in the anaplastic thyroid carcinoma cell lines HTh7 and HTh74. This distribution is not affected by thyroid stimulating hormone (TSH) incubation of HTh74, the only cell line that expresses a functional TSH-receptor. Immunofluorescence data disclosed an additional nuclear localization of cathepsin B immunoreactivity. This was supported by biochemical data showing a proteolytically active variant slightly smaller than the cathepsin B proform in nuclear fractions. We also demonstrate that immunoreactions specific for cathepsin V, but not cathepsin L, are localized to the nucleus in HTh74 in peri-nucleolar patterns. As deduced from co-localization studies and in vitro degradation assays, we suggest that nuclear variants of cathepsins are involved in the development of thyroid malignancies through modification of DNA-associated proteins.