935 resultados para 730113 Digestive system and disorders
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Collation: v.1: [2], x, 120 p.; v.2: 138, [2] p. (last leaf blank); v.3: 126, [2] p. (last leaf blank); v.4: 100 p.; v.5: 52 p.; v.6: (atlas): 347 leaves of plates.
Resumo:
"HRP-0906516."
Resumo:
Many authors report changes in the control of the trunk muscles in people with low back pain (LBP). Although there is considerable disagreement regarding the nature of these changes, we have consistently found differential effects on the deep intrinsic and superficial muscles of the lumbopelvic region. Two issues require consideration; first, the potential mechanisms for these changes in control, and secondly, the effect or outcome of changes in control for lumbopelvic function. Recent data indicate that experimentally induced pain may replicate some of the changes identified in people with LBP. While this does not exclude the possibility that changes in control of the trunk muscles may lead to pain, it does argue that, at least in some cases, pain may cause the changes in control. There are many possible mechanisms, including changes in excitability in the motor pathway, changes in the sensory system, and factors associated. with the attention demanding, stressful and fearful aspects of pain. A new hypothesis is presented regarding the outcome from differential effects of pain on the elements of the motor system. Taken together these data argue for strategies of prevention and rehabilitation of LBP (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Observation of the occurrence of protective muscle activity is advocated in assessment of the peripheral nervous system by means of neural provocation tests. However, no studies have yet demonstrated abnormal force generation in a patient population. Objectives: To analyze whether aberrations in shoulder girdle-elevation force during neural tissue provocation testing for the median nerve (NTPTI) can be demonstrated, and whether possible aberrations can be normalized following cervical mobilization. Study Design: A single-blind randomized comparative controlled study. Setting: Laboratory setting annex in a manual therapy teaching practice. Participants: Twenty patients with unilateral or bilateral neurogenic cervicobrachial pain. Methods: During the NTPTI, we used a load cell and electrogoniometer to record continuously the shoulder-girdle elevation force in relation to the available range of elbow extension. Following randomization, we analyzed the immediate treatment effects of a cervical contralateral lateral glide mobilization technique (experimental group) and therapeutic ultrasound (control group). Results: On the involved side, the shoulder-girdle elevation force occur-red earlier, and the amount of force at the end of the test was substantially, though not significantly, greater than that on the uninvolved side at the corresponding range of motion. Together with a significant reduction in pain perception after cervical mobilization, a clear tendency toward normalization of the force curve could be observed, namely, a significant decrease in force generation and a delayed onset. The control group demonstrated no differences. Conclusions: Aberrations in force generation during neural, provocation testing are present in patients with neurogenic pain and can be normalized with appropriate treatment modalities.
Resumo:
The ciliary neurotrophic factor alpha-receptor(CNTFRalpha) is required for motoneuron survival during development, but the relevant ligand(s) has not been determined. One candidate is the heterodimer formed by cardiotrophin-like cytokine (CLC) and cytokine-like factor 1 (CLF). CLC/CLF binds to CNTFRalpha and enhances the survival of developing motoneurons in vitro; whether this novel trophic factor plays a role in neural development in vivo has not been tested. We examined motor and sensory neurons in embryonic chicks treated with CLC and in mice with a targeted deletion of the clf gene. Treatment with CLC increased the number of lumbar spinal cord motoneurons that survived the cell death period in chicks. However, this effect was regionally specific, because brachial and thoracic motoneurons were unaffected. Similarly, newborn clf -/- mice exhibited a significant reduction in lumbar motoneurons, with no change in the brachial or thoracic cord. Clf deletion also affected brainstem motor nuclei in a regionally specific manner; the number of motoneurons in the facial but not hypoglossal nucleus was significantly reduced. Sensory neurons of the dorsal root ganglia were not affected by either CLC treatment or clf gene deletion. Finally, mRNA for both clc and clf was found in skeletal muscle fibers of embryonic mice during the motoneuron cell death period. These findings support the view that CLC/CLF is a target-derived factor required for the survival of specific pools of motoneurons. The in vivo actions of CLC and CLF can account for many of the effects of CNTFRalpha on developing motoneurons.
Resumo:
The C2 domain is one of the most frequent and widely distributed calcium-binding motifs. Its structure comprises an eight-stranded beta-sandwich with two structural types as if the result of a circular permutation. Combining sequence, structural and modelling information, we have explored, at different levels of granularity, the functional characteristics of several families of C2 domains. At the coarsest level,the similarity correlates with key structural determinants of the C2 domain fold and, at the finest level, with the domain architecture of the proteins containing them, highlighting the functional diversity between the various subfamilies. The functional diversity appears as different conserved surface patches throughout this common fold. In some cases, these patches are related to substrate-binding sites whereas in others they correspond to interfaces of presumably permanent interaction between other domains within the same polypeptide chain. For those related to substrate-binding sites, the predictions overlap with biochemical data in addition to providing some novel observations. For those acting as protein-protein interfaces' our modelling analysis suggests that slight variations between families are a result of not only complementary adaptations in the interfaces involved but also different domain architecture. In the light of the sequence and structural genomic projects, the work presented here shows that modelling approaches along with careful sub-typing of protein families will be a powerful combination for a broader coverage in proteomics. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Nerve sprouts emerge from motor nerve terminals following blockade of exo-endocytosis for more than 3 days by botulinum neurotoxin (BoNT), and form functional synapses, albeit temporary. Upon restoration of synaptic activity to the parent terminal 7 and 90 days after exposure to BoNT/F or A respectively, a concomitant retraction of the outgrowths was observed. BoNT/E caused short-term neuroparalysis, and dramatically accelerated the recovery of BoNT/A-paralyzed muscle by further truncation of SNAP-25 and its replenishment with functional full-length SNARE. The removal of 9 C-terminal residues from SNAP-25 by BoNT/A leads to persistence of the inhibitory product due to the formation of a nonproductive SNARE complex(es) at release sites, whereas deletion of a further 17 amino acids permits replenishment and a speedy recovery. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Dizziness and/or unsteadiness are common symptoms of chronic whiplash-associated disorders. This study aimed to report the characteristics of these symptoms and determine whether there was any relationship to cervical joint position error. Joint position error, the accuracy to return to the natural head posture following extension and rotation, was measured in 102 subjects with persistent whiplash-associated disorder and 44 control subjects. Whiplash subjects completed a neck pain index and answered questions about the characteristics of dizziness. The results indicated that subjects with whiplash-associated disorders had significantly greater joint position errors than control subjects. Within the whiplash group, those with dizziness had greater joint position errors than those without dizziness following rotation (rotation (R) 4.5degrees (0.3) vs 2.9degrees (0.4); rotation (L) 3.9degrees (0.3) vs 2.8degrees (0.4) respectively) and a higher neck pain index (55.3% (1.4) vs 43.1% (1.8)). Characteristics of the dizziness were consistent for those reported for a cervical cause but no characteristics could predict the magnitude of joint position error. Cervical mechanoreceptor dysfunction is a likely cause of dizziness in whiplash-associated disorder.
Resumo:
Drugs and metabolites are eliminated from the body by metabolism and excretion. The kidney makes the major contribution to excretion of unchanged drug and also to excretion of metabolites. Net renal excretion is a combination of three processes - glomerular filtration, tubular secretion and tubular reabsorption. Renal function has traditionally been determined by measuring plasma creatinine and estimating creatinine clearance. However, estimated creatinine clearance measures only glomerular filtration with a small contribution from active secretion. There is accumulating evidence of poor correlation between estimated creatinine clearance and renal drug clearance in different clinical settings, challenging the 'intact nephron hypothesis' and suggesting that renal drug handling pathways may not decline in parallel. Furthermore, it is evident that renal drug handling is altered to a clinically significant extent in a number of disease states, necessitating dosage adjustment not just based on filtration. These observations suggest that a re-evaluation of markers of renal function is required. Methods that measure all renal handling pathways would allow informed dosage individualisation using an understanding of renal excretion pathways and patient characteristics. Methodologies have been described to determine individually each of the renal elimination pathways. However, their simultaneous assessment has only recently been investigated. A cocktail of markers to measure simultaneously the individual renal handling pathways have now been developed, and evaluated in healthy volunteers. This review outlines the different renal elimination pathways and the possible markers that can be used for their measurement. Diseases and other physiological conditions causing altered renal drug elimination are presented, and the potential application of a cocktail of markers for the simultaneous measurement of drug handling is evaluated. Further investigation of the effects of disease processes on renal drug handling should include people with HIV infection, transplant recipients (renal and liver) and people with rheumatoid arthritis. Furthermore, changes in renal function in the elderly, the effect of sex on renal function, assessment of living kidney donors prior to transplantation and the investigation of renal drug interactions would also be potential applications. Once renal drug handling pathways are characterised in a patient population, the implications for accurate dosage individualisation can be assessed. The simultaneous measurement of renal function elimination pathways of drugs and metabolites has the potential to assist in understanding how renal function changes with different disease states or physiological conditions. In addition, it will further our understanding of fundamental aspects of the renal elimination of drugs.
Resumo:
Hypersensitivity to a variety of sensory Stimuli is a feature of persistent whiplash associated disorders (WAD). However, little is known about sensory disturbances from the time Of injury until transition to either recovery or symptom persistence. Quantitative sensory testing (pressure and thermal pain thresholds, the brachial plexus provocation test), the sympathetic vasoconstrictor reflex and psychological distress (GHQ-28) were prospectively measured in 76 whiplash Subjects within 1 month of injury and then 2, 3 and 6 months post-injury. Subjects were classified at 6 months post-injury using scores on the Neck Disability Index: recovered (30). Sensory and sympathetic nervous system tests were also measured in 20 control subjects. All whiplash groups demonstrated local mechanical hyperalgesia in the cervica spine at 1 month post-injury. This hyperalgesia persisted in those with moderate/severe symptoms at 6 months but resolved by 2 months in those who had recovered or reported persistent mild symptoms. Only those with persistent moderate/severe symptoms at 6 months demonstrated generalised hypersensitivity to all sensory tests. These changes Occurred within 1 month of injury and remained Unchanged throughout the Study period. Whilst no significant group differences were evident for the sympathetic vasoconstrictor response, the moderate/severe group showed a tendency for diminished sympathetic reactivity. GHQ-28 scores of the moderate/severe group were higher than those of the other two groups. The differences in GHQ-28 did not impact on any of the sensory measures. These findings suggest that those with persistent moderate/severe symptoms at 6 months display, soon after injury, generalised hypersensitivity suggestive of changes in central pain processing mechanisms. This phenomenon did not Occur in those who recover or those with persistent mild symptoms. (C) 2003 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The role of growth hormone (GH) in embryonic growth is controversial, yet preimplantation embryos express GH, insulin-like growth factor I (IGF-I) and their receptors. In this study, addition of bovine GH doubled the proportion of two-cell embryos forming blastocysts and increased by about 25% the number of cells in those blastocysts with a concentration-response curve showing maximal activity at 1 pg bovine GH ml(-1), with decreasing activity at higher and lower concentrations. GH increased the number of cells in the trophectoderm by 25%, but did not affect the inner cell mass of blastocysts. Inhibition of cell proliferation by anti-GH antiserum indicated that GH is a potent autocrine or paracrine regulator of the number of trophectoderm cells in vivo. Type 1 IGF receptors (IGF1R) were localized to cytoplasmic vesicles and plasma membrane in the apical domains of uncompacted and compacted eight-cell embryos, but were predominantly apparent in cytoplasmic vesicles of the trophectoderm cells of the blastocyst, similar to GH receptors. Studies using alphaIR3 antiserum which blocks ligand activation of IGF1R, showed that IGF1R participate in the autocrine or paracrine regulation of the number of cells in the inner cell mass by an endogenous IGF-I-IGF1R pathway. However, alphaIR3 did not affect GH stimulation of the number of trophectoderm cells. Therefore, CH does not use secondary actions via embryonic IGF-I to modify the number of blastocyst cells. This result indicates that GH and IGF-I act independently. GH may selectively regulate the number of trophectoderm cells and thus implantation and placental growth. Embryonic GH may act in concert with IGF-I, which stimulates proliferation in the inner cell mass, to optimize blastocyst development.
Resumo:
Insulin-like growth factor II (IGF-II) and its receptor, the IGF-II/mannose-6-phosphate (IGF-II/M6P) receptor, are first expressed from the zygotic genome at the two-cell stage of mouse development. However, their role is not clearly defined. Insulin-like growth factor II is believed to mediate growth through the heterologous type 1 IGF and insulin receptors, whereas the IGF-II/M6P receptor is believed to act as a negative regulator of somatic growth by limiting the availability of excess levels of IGF-II. These studies demonstrate that IGF-II does have a role in growth regulation in the early embryo through the IGF-II/M6P receptor. Insulin-like growth factor II stimulated cleavage rate in two-cell embryos in vitro. Moreover, this receptor is required for the glycaemic response of two-cell embryos to IGF-II and for normal progression of early embryos to the blastocyst stage. Improved development of embryos in crowded culture supports the concept of an endogenous embryonic paracrine activity that enhances cell proliferation. These responses indicate that the IGF-II/M6P receptor is functional and likely to participate in such a regulatory circuit. The functional role of IGF-II and its receptor is discussed with reference to regulation of early development.