928 resultados para 660101 Coal-electricity
Resumo:
In complex hydrogeological environments the effective management of groundwater quality problems by pump-and-treat operations can be most confidently achieved if the mixing dynamics induced within the aquifer by pumping are well understood. The utility of isotopic environmental tracers (C-, H-, O-, S-stable isotopic analyses and age indicators—14C, 3H) for this purpose is illustrated by the analysis of a pumping test in an abstraction borehole drilled into flooded, abandoned coal mineworkings at Deerplay (Lancashire, UK). Interpretation of the isotope data was undertaken conjunctively with that of major ion hydrochemistry, and interpreted in the context of the particular hydraulic setting of flooded mineworkings to identify the sources and mixing of water qualities in the groundwater system. Initial pumping showed breakdown of initial water quality stratification in the borehole, and gave evidence for distinctive isotopic signatures (d34S(SO4) ~= -1.6‰, d18O(SO4) ~= +15‰) associated with primary oxidation of pyrite in the zone of water table fluctuation—the first time this phenomenon has been successfully characterized by these isotopes in a flooded mine system. The overall aim of the test pumping—to replace an uncontrolled outflow from a mine entrance in an inconvenient location with a pumped discharge on a site where treatment could be provided—was swiftly achieved. Environmental tracing data illustrated the benefits of pumping as little as possible to attain this aim, as higher rates of pumping induced in-mixing of poorer quality waters from more distant old workings, and/or renewed pyrite oxidation in the shallow subsurface.
Resumo:
Using a unique set of data and exploiting a large-scale natural experiment, we estimate the effect of real-time usage information on residential electricity consumption in Northern Ireland. Starting in April 2002, the utility replaced prepayment meters with advanced meters that allow the consumer to track usage in real-time. We rely on this event, account for the endogeneity of price and payment plan with consumption through a plan selection correction term, and find that the provision of information is associated with a decline in electricity consumption of 11-17%. We find that the reduction is robust to different specifications, selection-bias correction methods and subsamples of the original data. The advanced metering program delivers reasonably cost-effective reductions in carbon dioxide emissions, even under the most conservative usage reduction scenarios.
Resumo:
Two new original poems
Resumo:
The Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. In this study the effects of 213,561 electric vehicles on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is investigated. A model of Ireland’s electricity market in 2020 is developed using the power systems market model called PLEXOS for power systems. The amount of CO2 emissions associated with charging the EVs and the impacts with respect to Ireland’s target for renewable energy in transport is also quantified. A single generation portfolio and two different charging scenarios, arising from a peak and off-peak charging profile are considered. Results from the study confirm that offpeak charging is more beneficial than peak charging and that charging EVs will contribute 1.45% energy supply to the 10% renewable energy in transport target. The net CO2 reductions are 147 and 210 kt CO2 respectively.
Resumo:
This paper presents the results of an experimental investigation on compressive strength of unfired compressed brick obtained with coal combustion residues (CCRs) produced by the Niger Coal Society. Preliminary physical and optical (XRD and SEM) characterisation of coal slag, including lixiviation tests, have been carried out. Cement powder, lateritic clayey soil and sand have been chosen as stabilizing agents for bricks. 12 dosages have been tested and about 300 bricks have been produced with a hand-operated press. Results show uniaxial compressive strengths (UCSs) ranging from 4 MPa to 27 MPa for the highest cement stabilisation ratio. UCS higher than 7.5 MPa have been observed for stabilisation with 20% of laterite +10% cement after 45 days of curing. Obtained bricks showed good mechanical resistance and low weight. No health threat has been detected for the obtained samples. Study developments are oriented towards the analysis of Pozzolanic properties of CCRs, properties of hydrated lime stabilisation, thermal properties and durability assessment.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
Wind energy has been identified as key to the European Union’s 2050 low carbon economy. However, as wind is a variable resource and stochastic by nature, it is difficult to plan and schedule the power system under varying wind power generation. This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact of the magnitude and variance of the offshore wind power forecast error on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price is analysed. The main findings of this research are that the magnitude of the offshore wind power forecast error has the largest impact on system generation costs and dispatch-down of wind, but the variance of the offshore wind power forecast error has the biggest impact on emissions costs and system marginal price. Overall offshore wind power forecast error variance results in a system marginal price increase of 9.6% in 2050.
Resumo:
Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio.
Resumo:
This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact from offshore wind power forecast errors of up to 2000 MW on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price are analysed. The main findings of this research are an increase in system marginal prices of approximately 1% for every percentage point rise in the offshore wind power forecast error regardless of the average forecast error sign. If offshore wind power generates less than forecasted (−13%) generation costs and system marginal prices increases by 10%. However, if offshore wind power generates more than forecasted (4%) the generation costs decrease yet the system marginal prices increase by 3%. The dispatch down of large quantities of wind power highlights the need for flexible interconnector capacity. From a system operator's perspective it is more beneficial when scheduling wind ahead of the trading period to forecast less wind than will be generated.
Resumo:
To develop a chemical inhibitor that can efficiently suppress coal oxidation, nine tetraalkylphosphonium-based ionic liquids (ILs) and one imidazolium-based IL [1-allyl-3-methylimidazolium chloride ([AMIm]Cl)] were examined as additives. These ILs were used to treat and investigate the inhibitory effect on the oxidation activity and the structure of lignite coal. Characterization using thermogravimetric analysis showed that phosphonium-based ILs are able to inhibit coal oxidation up to 400 degrees C with the tributylethylphosphonium diethylphosphate ([P-4,P-4,P-4,P-2][DEP]) found to be the most effective. In contrast to the tetraalkylphosphonium-based ILs, inhibition using [AMIm]Cl was only found to be effective at temperatures below 250 degrees C, indicating that the tetraallcylphosphonium-based ILs may be more suitable for the future application of suppressing coal spontaneous combustion over a wide range of temperatures. Fourier transform infrared spectroscopic data showed that the various functional groups change in the coal following IL treatment, which are a decrease in the minerals and hydrogen bonds in all treated coals, while decreased aliphatic hydrocarbon and increased carbonyl bonds only appeared in some samples. During the oxidation of coal, the decomposition of aliphatic hydrocarbon groups is inhibited and the formation of carbonyl groups is delayed, so that the evolved gas concentration decreased, as shown by the temperature-programmed oxidation-mass spectrometry results. The deployment of the [P-4,P-4,P-4,P-2][ DEP] and tributylmethylphosphonium methylsulfate Its as additives also show good inhibitory effect on coal oxidation over the temperature range studied, and a relatively stronger interaction between [P-4,P-4,P-4,P-2] [DEP] and coal is demonstrated by the additive model.
Resumo:
A single poem, presented in the section of the anthology devoted to showcasing the collections shortlisted for the Forward Prize for Best Collection.
Resumo:
The European Union has set a target for 10% renewable energy in transport by 2020 to be met using biofuels and electric vehicles. In the case of biofuels, the biofuel must achieve greenhouse gas savings of 35% relative to the fossil fuel replaced. For biofuels, greenhouse gas savings can be calculated using life cycle analysis or the European Union default values. In contrast, all electricity used in transport is considered to be the same, regardless of the source or the type of electric vehicle. However, the choice of the electric vehicle and electricity source will have a major impact on the greenhouse gas saving. In this paper the initial findings of a well-to-wheel analysis of electric vehicle deployment in Northern Ireland are presented. The key finding indicates that electric vehicles require least amount of energy per mile on a well-to-wheel basis, consume the fewest resources, even accommodating inefficient fuel production, in comparison to standard internal combustion engine and hybrid vehicles.
Resumo:
Currently wind power is dominated by onshore wind farms in the British Isles, but both the United Kingdom and the Republic of Ireland have high renewable energy targets, expected to come mostly from wind power. However, as the demand for wind power grows to ensure security of energy supply, as a potentially cheaper alternative to fossil fuels and to meet greenhouse gas emissions reduction targets offshore wind power will grow rapidly as the availability of suitable onshore sites decrease. However, wind is variable and stochastic by nature and thus difficult to schedule. In order to plan for these uncertainties market operators use wind forecasting tools, reserve plant and ancillary service agreements. Onshore wind power forecasting techniques have improved dramatically and continue to advance, but offshore wind power forecasting is more difficult due to limited datasets and knowledge. So as the amount of offshore wind power increases in the British Isles robust forecasting and planning techniques are even more critical. This paper presents a methodology to investigate the impacts of better offshore wind forecasting on the operation and management of the single wholesale electricity market in the Republic of Ireland and Northern Ireland using PLEXOS for Power Systems. © 2013 IEEE.
Resumo:
The efficiency of generation plants is an important measure for evaluating the operating performance. The objective of this paper is to evaluate electricity power generation by conducting an All-Island-Generator-Efficiency-Study (AIGES) for the Republic of Ireland and Northern Ireland by utilising a Data Envelopment Analysis (DEA) approach. An operational performance efficiency index is defined and pursued for the year 2008. The economic activities of electricity generation units/plants examined in this paper are characterized by numerous input and output indicators. Constant returns to scale (CRS) and variable returns to scale (VRS) type DEA models are employed in the analysis. Also a slacks based analysis indicates the level of inefficiency for each variable examined. The findings from this study provide a general ranking and evaluation but also facilitate various interesting efficiency comparisons between generators by fuel type.
Resumo:
Throughout the world the share of wind power in the generation mix is increasing. In the All Island Grid, of the Republic of Ireland and Northern Ireland there is now over 1.5 GW of installed wind power. As the penetration of these variable, non-dispatchable generators increases, power systems are becoming more sensitive to weather events on the supply side as well as on the demand side. In the temperate climate of Ireland, sensitivity of supply to weather is mainly due to wind variability while demand sensitivity is driven by space heating or cooling loads. The interplay of these two weather-driven effects is of particular concern if demand spikes driven by low temperatures coincide with periods of low winds. In December 2009 and January 2010 Ireland experienced a prolonged spell of unusually cold conditions. During much of this time, wind generation output was low due to low wind speeds. The impacts of this event are presented as a case study of the effects of weather extremes on power systems with high penetrations of variable renewable generation.