630 resultados para 4D Geodesy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DTRF2008 is a realization of the International Terrestrial Reference System ITRS. The DTRF2008 consists of station positions and velocities of global distributed observing stations of the space geodetic observation techniques VLBI, SLR, GPS and DORIS. The DTRF2008 was released in May 2010 and includes the observation data of the techniques up to and including 2008. The observation data are processed and submitted by the corresponding international services: IGS (International GNSS Service, http://igscb.jpl.nasa.gov) IVS (International VLBI Service, http://ivscc.gsfc.nasa.gov) ILRS (International Laser Ranging Service, http://ilrs.gsfc.nasa.gov) IDS (International DORIS Service, http://ids-doris.org). The DTRF2008 is an independent ITRS realization, which is computed on the basis of the same input data as the ITRF2008 (IGN, Paris). Both realizations differ with respect to their computation strategies: while the ITRF2008 is based on the combination of solutions, the DTRF2008 is computed by the combination of normal equations. The DTRF2008 comprises the coordinates of 559 GPS-, 106 VLBI-, 122 SLR- and 132 DORIS-stations. The reference epoch is 1.1.2005, 0h UTC. The Earth Orientation Parameters (EOP) - that means the coordinates of the terrestrial and the celestial pole, UT1-UTC and the Length of Day (LOD) - were simultaneously estimated with the station coordinates. The EOP time series cover the period of 1983 to 2008. The station names are the official IERS indications: cdp numbers or 4-character IDs and DOMES numbers (http://itrf.ensg.ign.fr/doc_ITRF/iers_sta_list.txt). The solution is available in different file formats (SINEX and SSC), see below. A detailed description of the solution is given by Seitz M. et al. (2012). The results of a comparison of DTRF2008 and ITRF2008 is given by Seitz M. et al. (2013). More information as well as residual time series of the station positions can be made available by request.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surf clams Mesodesma mactroides Reeve, 1854 and Donax hanleyanus Philippi, 1847 are the two dominating species in macrobenthic communities of sandy beaches off northern Argentina, with the latter now surpassing M. mactroides populations in abundance and biomass. Before stock decimation caused by exploitation (during the 1940s and 1950s) and mass mortality events (1995, 1999 and 2007) M. mactroides was the prominent primary consumer in the intertidal ecosystem and an important economic resource in Argentina. Since D. hanleyanus was not commercially fished and not affected by mass mortality events, it took over as the dominant species, but did never reach the former abundance of M. mactroides. Currently abundance and biomass of both surf clams are a multiple smaller than those of forty years ago, indicating the conservation status of D. hanleyanus and M. mactroides as endangered. Therefore the aim of this study is to analyse the population dynamics (population structure, growth and reproductive biology) of D. hanleyanus and M. mactroides, and to compare the results with historical data in order to detect possible differences within surf clam populations forty years ago and at present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a geoid solution for the Weddell Sea and adjacent continental Antarctic regions. There, a refined geoid is of interest, especially for oceanographic and glaciological applications. For example, to investigate the Weddell Gyre as a part of the Antarctic Circumpolar Current and, thus, of the global ocean circulation, the mean dynamic topography (MDT) is needed. These days, the marine gravity field can be inferred with high and homogeneous resolution from altimetric height profiles of the mean sea surface. However, in areas permanently covered by sea ice as well as in coastal regions, satellite altimetry features deficiencies. Focussing on the Weddell Sea, these aspects are investigated in detail. In these areas, ground-based data that have not been used for geoid computation so far provide additional information in comparison with the existing high-resolution global gravity field models such as EGM2008. The geoid computation is based on the remove-compute-restore approach making use of least-squares collocation. The residual geoid with respect to a release 4 GOCE model adds up to two meters and more in the near-coastal and continental areas of the Weddell Sea region, also in comparison with EGM2008. Consequently, the thus refined geoid serves to compute new estimates of the regional MDT and geostrophic currents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial communities were analyzed at 17 sites visited during the expedition Tundra Northwest 1999 (TNW-99) by microscopic analyses (epifluorescence microscopy and image analyses). The data were used to describe the communities of bacteria, fungi and algae in detail by number, biovolume and biomass. Great variability was found, which could be related to organic matter content of soils and features of vegetation patterns. The amounts (numbers and abundance) of organisms and data on microbial biomass are discussed in relation to other polar environments of the Northern and Southern Hemispheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HCMR_SES_LAGRANGIAN_GR2_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during October 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6?m and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus bacteria: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dataset is based on samples collected in the framework of the project SESAME, in the Ionian, Libyan and Aegean Sea during March- April 2008. For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HCMR_SES_LAGRANGIAN_GR1_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during April 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus biomass: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).