975 resultados para 3D point cloud
Resumo:
In this work, plasticizer agents were incorporated in a chitosan based formulation, as a strategy to improve the fragile structure of chitosan based-materials. Three different plasticizers: ethylene glycol, glycerol and sorbitol, were blended with chitosan to prepare 3D dense chitosan specimens. The properties of the obtained structures were assessed for mechanical, microstructural, physical and biocompatibility behavior. The results obtained revealed that from the different specimens prepared, the blend of chitosan with glycerol has superior mechanical properties and good biological behavior, making this chitosan based formulation a good candidate to improve robust chitosan structures for the construction of bioabsorbable orthopedic implants.
Resumo:
This paper addresses the estimation of surfaces from a set of 3D points using the unified framework described in [1]. This framework proposes the use of competitive learning for curve estimation, i.e., a set of points is defined on a deformable curve and they all compete to represent the available data. This paper extends the use of the unified framework to surface estimation. It o shown that competitive learning performes better than snakes, improving the model performance in the presence of concavities and allowing to desciminate close surfaces. The proposed model is evaluated in this paper using syntheticdata and medical images (MRI and ultrasound images).
Resumo:
This paper is about a PV system linked to the electric grid through power converters under cloud scope. The PV system is modeled by the five parameters equivalent circuit and a MPPT procedure is integrated into the modeling. The modeling for the converters models the association of a DC-DC boost with a three-level inverter. PI controllers are used with PWM by sliding mode control associated with space vector modulation controlling the booster and the inverter. A case study addresses a simulation to assess the performance of a PV system linked to the electric grid. Conclusions regarding the integration of the PV system into the electric grid are presented. © IFIP International Federation for Information Processing 2015.
Resumo:
This paper is on a simulation for offshore wind systems in deep water under cloud scope. The system is equipped with a permanent magnet synchronous generator and a full-power three-level converter, converting the electric energy at variable frequency in one at constant frequency. The control strategies for the three-level are based on proportional integral controllers. The electric energy is injected through a HVDC transmission submarine cable into the grid. The drive train is modeled by a three-mass model taking into account the resistant stiffness torque, structure and tower in the deep water due to the moving surface elevation. Conclusions are taken on the influence of the moving surface on the energy conversion. © IFIP International Federation for Information Processing 2015.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Ramo de Sistemas Autónomos
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Resumo:
Lunacloud is a cloud service provider with offices in Portugal, Spain, France and UK that focus on delivering reliable, elastic and low cost cloud Infrastructure as a Service (IaaS) solutions. The company currently relies on a proprietary IaaS platform - the Parallels Automation for Cloud Infrastructure (PACI) - and wishes to expand and integrate other IaaS solutions seamlessly, namely open source solutions. This is the challenge addressed in this thesis. This proposal, which was fostered by Eurocloud Portugal Association, contributes to the promotion of interoperability and standardisation in Cloud Computing. The goal is to investigate, propose and develop an interoperable open source solution with standard interfaces for the integrated management of IaaS Cloud Computing resources based on new as well as existing abstraction libraries or frameworks. The solution should provide bothWeb and application programming interfaces. The research conducted consisted of two surveys covering existing open source IaaS platforms and PACI (features and API) and open source IaaS abstraction solutions. The first study was focussed on the characteristics of most popular open source IaaS platforms, namely OpenNebula, OpenStack, CloudStack and Eucalyptus, as well as PACI and included a thorough inventory of the provided Application Programming Interfaces (API), i.e., offered operations, followed by a comparison of these platforms in order to establish their similarities and dissimilarities. The second study on existing open source interoperability solutions included the analysis of existing abstraction libraries and frameworks and their comparison. The approach proposed and adopted, which was supported on the conclusions of the carried surveys, reuses an existing open source abstraction solution – the Apache Deltacloud framework. Deltacloud relies on the development of software driver modules to interface with different IaaS platforms, officially provides and supports drivers to sixteen IaaS platform, including OpenNebula and OpenStack, and allows the development of new provider drivers. The latter functionality was used to develop a new Deltacloud driver for PACI. Furthermore, Deltacloud provides a Web dashboard and REpresentational State Transfer (REST) API interfaces. To evaluate the adopted solution, a test bed integrating OpenNebula, Open- Stack and PACI nodes was assembled and deployed. The tests conducted involved time elapsed and data payload measurements via the Deltacloud framework as well as via the pre-existing IaaS platform API. The Deltacloud framework behaved as expected, i.e., introduced additional delays, but no substantial overheads. Both the Web and the REST interfaces were tested and showed identical measurements. The developed interoperable solution for the seamless integration and provision of IaaS resources from PACI, OpenNebula and OpenStack IaaS platforms fulfils the specified requirements, i.e., provides Lunacloud with the ability to expand the range of adopted IaaS platforms and offers a Web dashboard and REST API for the integrated management. The contributions of this work include the surveys and comparisons made, the selection of the abstraction framework and, last, but not the least, the PACI driver developed.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica.
Resumo:
Trabalho de Projecto apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Novos Media e Práticas Web
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Geológica (Georrecursos)
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Biomédica
Resumo:
The aim is to examine the temporal trends of hip fracture incidence in Portugal by sex and age groups, and explore the relation with anti-osteoporotic medication. From the National Hospital Discharge Database, we selected from 1st January 2000 to 31st December 2008, 77,083 hospital admissions (77.4% women) caused by osteoporotic hip fractures (low energy, patients over 49 years-age), with diagnosis codes 820.x of ICD 9-CM. The 2001 Portuguese population was used as standard to calculate direct age-standardized incidence rates (ASIR) (100,000 inhabitants). Generalized additive and linear models were used to evaluate and quantify temporal trends of age specific rates (AR), by sex. We identified 2003 as a turning point in the trend of ASIR of hip fractures in women. After 2003, the ASIR in women decreased on average by 10.3 cases/100,000 inhabitants, 95% CI (− 15.7 to − 4.8), per 100,000 anti-osteoporotic medication packages sold. For women aged 65–69 and 75–79 we identified the same turning point. However, for women aged over 80, the year 2004 marked a change in the trend, from an increase to a decrease. Among the population aged 70–74 a linear decrease of incidence rate (95% CI) was observed in both sexes, higher for women: − 28.0% (− 36.2 to − 19.5) change vs − 18.8%, (− 32.6 to − 2.3). The abrupt turning point in the trend of ASIR of hip fractures in women is compatible with an intervention, such as a medication. The trends were different according to gender and age group, but compatible with the pattern of bisphosphonates sales.
Resumo:
A sequente dissertação resulta do desenvolvimento de um sistema de navegação subaquático para um Remotely Operated Vehicle (ROV). A abordagem proposta consiste de um algoritmo em tempo real baseado no método de Mapeamento e Localização Simultâneo (SLAM) a partir de marcadores em ambientes marinhos não estruturados. SLAM introduz dois principais desafios: (i) reconhecimento dos marcadores provenientes dos dados raw do sensor, (ii) associação de dados. Na detecção dos marcadores foram aplicadas técnicas de visão artificial baseadas na extracção de pontos e linhas. Para testar o uso de features no visual SLAM em tempo real nas operações de inspecção subaquáticas foi desenvolvida uma plataforma modicada do RT-SLAM que integra a abordagem EKF SLAM. A plataforma é integrada em ROS framework e permite estimar a trajetória 3D em tempo real do ROV VideoRay Pro 3E até 30 fps. O sistema de navegação subaquático foi caracterizado num tanque instalado no Laboratório de Sistemas Autónomos através de um sistema stereo visual de ground truth. Os resultados obtidos permitem validar o sistema de navegação proposto para veículos subaquáticos. A trajetória adquirida pelo VideoRay em ambiente controlado é validada pelo sistema de ground truth. Dados para ambientes não estruturados, como um gasoduto, foram adquiridos e obtida respectiva trajetória realizada pelo robô. Os dados apresentados comprovam uma boa precisão e exatidão para a estimativa da posição.
Resumo:
Comunicação apresentada na CAPSI 2011 - 11ª Conferência da Associação Portuguesa de Sistemas de Informação – A Gestão de Informação na era da Cloud Computing, Lisboa, ISEG/IUL-ISCTE/, 19 a 21 de Outubro de 2011.