950 resultados para 3D numerical modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology of identification and characterization of coherent structures mostly known as clusters is applied to hydrodynamic results of numerical simulation generated for the riser of a circulating fluidized bed. The numerical simulation is performed using the MICEFLOW code, which includes the two-fluids IIT`s hydrodynamic model B. The methodology for cluster characterization that is used is based in the determination of four characteristics, related to average life time, average volumetric fraction of solid, existing time fraction and frequency of occurrence. The identification of clusters is performed by applying a criterion related to the time average value of the volumetric solid fraction. A qualitative rather than quantitative analysis is performed mainly owing to the unavailability of operational data used in the considered experiments. Concerning qualitative analysis, the simulation results are in good agreement with literature. Some quantitative comparisons between predictions and experiment were also presented to emphasize the capability of the modeling procedure regarding the analysis of macroscopic scale coherent structures. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure is proposed to accurately model thin wires in lossy media by finite element analysis. It is based on the determination of a suitable element width in the vicinity of the wire, which strongly depends on the wire radius to yield accurate results. The approach is well adapted to the analysis of grounding systems. The numerical results of the application of finite element analysis with the suitably chosen element width are compared with both analytical results and those computed by a commercial package for the analysis of grounding systems, showing very good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology for the computational modeling of the fatigue crack growth in pressurized shell structures, based on the finite element method and concepts of Linear Elastic Fracture Mechanics, is presented. This methodology is based on that developed by Potyondy [Potyondy D, Wawrzynek PA, Ingraffea, AR. Discrete crack growth analysis methodology for through crack in pressurized fuselage structures. Int J Numer Methods Eng 1995;38:1633-1644], which consists of using four stress intensity factors, computed from the modified crack integral method, to predict the fatigue propagation life as well as the crack trajectory, which is computed as part of the numerical simulation. Some issues not presented in the study of Potyondy are investigated herein such as the influence of the crack increment size and the number of nodes per element (4 or 9 nodes) on the simulation results by means of a fatigue crack propagation simulation of a Boeing 737 airplane fuselage. The results of this simulation are compared with experimental results and those obtained by Potyondy [1]. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model, numerical simulations and stability and flow regime maps corresponding to severe slugging in pipeline riser systems, are presented. In the simulations air and water were used as flowing fluids. The mathematical model considers continuity equations for liquid and gas phases, with a simplified momentum equation for the mixture, neglecting inertia. A drift-flux model, evaluated for the local conditions in the riser, is used as a closure law. The developed model predicts the location of the liquid accumulation front in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The numerical procedure is convergent for different nodalizations. A comparison is made with experimental results corresponding to a catenary riser, showing very good results for slugging cycle and stability and flow regime maps. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 3D flow around a circular cylinder free to oscillate transversely to the free stream was simulated using Computational Fluid Dynamics (CFD) and the Spalart-Allmaras Detached Eddy Simulation (DES) turbulence model for a Reynolds number Re = 10(4). Simulations were carried out for a small mass-damping parameter m*zeta = 0.00858, where m* = 3.3 and zeta = 0.0026. We found good agreement between the numerical results and experimental data. The simulations predicted the high observed amplitudes of the upper branch of vortex-induced vibrations for low mass-damping parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The double-frequency jitter is one of the main problems in clock distribution networks. In previous works, sonic analytical and numerical aspects of this phenomenon were studied and results were obtained for one-way master-slave (OWMS) architectures. Here, an experimental apparatus is implemented, allowing to measure the power of the double-frequency signal and to confirm the theoretical conjectures. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive an analytic expression for the matric flux potential (M) for van Genuchten-Mualem (VGM) type soils which can also be written in terms of a converging infinite series. Considering the first four terms of this series, the accuracy of the approximation was verified by comparing it to values of M estimated by numerical finite difference integration. Using values of the parameters for three soils from different texture classes, the proposed four-term approximation showed an almost perfect match with the numerical solution, except for effective saturations higher than 0.9. Including more terms reduced the discrepancy but also increased the complexity of the equation. The four-term equation can be used for most applications. Cases with special interest in nearly saturated soils should include more terms from the infinite series. A transpiration reduction function for use with the VGM equations is derived by combining the derived expression for M with a root water extraction model. The shape of the resulting reduction function and its dependency on the derivative of the soil hydraulic diffusivity D with respect to the soil water content theta is discussed. Positive and negative values of dD/d theta yield concave and convex or S-shaped reduction functions, respectively. On the basis of three data sets, the hydraulic properties of virtually all soils yield concave reduction curves. Such curves based solely on soil hydraulic properties do not account for the complex interactions between shoot growth, root growth, and water availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymidine monophosphate kinase (TMPK) has emerged as an attractive target for developing inhibitors of Mycobacterium tuberculosis growth. In this study the receptor-independent (RI) 4D-QSAR formalism has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 5`-thiourea-substituted alpha-thymidine inhibitors. Models were developed for the entire training set and for a subset of the training set consisting of the most potent inhibitors. The optimized (RI) 4D-QSAR models are statistically significant (r(2) = 0.90, q(2) = 0.83 entire set, r(2) = 0.86, q(2) = 0.80 high potency subset) and also possess good predictivity based on test set predictions. The most and least potent inhibitors, in their respective postulated active conformations derived from the models, were docked in the active site of the TMPK crystallographic structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. This model identifies new regions of the inhibitors that contain pharmacophore sites, such as the sugar-pyrimidine ring structure and the region of the 5`-arylthiourea moiety. These new regions of the ligands can be further explored and possibly exploited to identify new, novel, and, perhaps, better antituberculosis inhibitors of TMPKmt. Furthermore, the 3D-pharmacophores defined by these models can be used as a starting point for future receptor-dependent antituberculosis drug design as well as to elucidate candidate sites for substituent addition to optimize ADMET properties of analog inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical model of heat transfer in fluidized-bed coating of solid cylinders is presented. By defining suitable dimensionless parameters, the governing equations and its associated initial and boundary conditions are discretized using the method of orthogonal collocation and the resulting ordinary differential equations simultaneously solved for the dimensionless coating thickness and wall temperatures. Parametric Studies showed that the dimensionless coating thickness and wall temperature depend on the relative heat capacities of the polymer powder and object, the latent heat of fusion and the size of the cylinder. Model predictions for the coating thickness and wall temperature compare reasonably well with numerical predictions and experimental coating data in the literature and with our own coating experiments using copper cylinders immersed in nylon-11 and polyethylene powders. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive probabilistic model for simulating dendrite morphology and investigating dendritic growth kinetics during solidification has been developed, based on a modified Cellular Automaton (mCA) for microscopic modeling of nucleation, growth of crystals and solute diffusion. The mCA model numerically calculated solute redistribution both in the solid and liquid phases, the curvature of dendrite tips and the growth anisotropy. This modeling takes account of thermal, curvature and solute diffusion effects. Therefore, it can simulate microstructure formation both on the scale of the dendrite tip length. This model was then applied for simulating dendritic solidification of an Al-7%Si alloy. Both directional and equiaxed dendritic growth has been performed to investigate the growth anisotropy and cooling rate on dendrite morphology. Furthermore, the competitive growth and selection of dendritic crystals have also investigated.