984 resultados para 34 cal ka BP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment core PS2458 from the Laptev Sea continental margin (983-m water depth) stems from a position close to the paleoriver mouth of Lena and Yana rivers. It was dated by AMS-14C and analyzed in high resolution for oxygen isotopes of planktic foraminifers. Except the uppermost 100 cm and possibly the lowermost meter of the 8-m-long core, the sediments were deposited during the last deglaciation (14.5-8.0 cal-ka). According to 210Pb data, the uppermost 100 cm represents only the last 200 years. Planktic foraminifers are present throughout the dated deglacial interval, with the exception of a short time after ca. 13 cal-ka. Taking into account the global "ice volume effect" on the oxygen isotopic composition of the foraminifers, the isotopic record is considered to reflect salinity changes which were influenced by variable freshwater runoff and a growing marine influence during the postglacial transgression of the Laptev Sea shelf. The most conspicuous feature in the isotopic record is an outstanding peak dated to ca. 13 cal-ka. It is proposed that it represents a rapid outburst of large amounts of freshwater, possibly from an ice-dammed lake in the hinterland. Possible correlations to the onset of the cool Younger Dryas event in the northern hemisphere are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clay mineralogical composition of a 552 cm long sediment core from Lake Terrasovoje in Amery Oasis, East Antarctica, was analysed and compared with that in surface sediments from other locations in the vicinity. The lower part of the sediment core is formed by sub- and proglacial sediments with a dominance of smectite and illite, and lower amounts of kaolinite and chlorite. The upper part of the core is deposited after 12 500 cal yr bp and mainly composed of illite and kaolinite, with low amounts of smectite and chlorite, such as found in samples from rock outcrops and covering sediments throughout Amery Oasis. The clay composition in the lower section of core Lz1005 suggest that the basin of Lake Terrasovoje was filled by a 150-200 m thickened Nemesis Glacier prior to 12 500 cal yr bp rather than by local ice caps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1-6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C/cm**2/ky. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat-sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent intensification of wind-driven upwelling of warm upper circumpolar deep water (UCDW) has been linked to accelerated melting of West Antarctic ice shelves and glaciers. To better assess the long term relationship between UCDWupwelling and the stability of theWest Antarctic Ice Sheet, we present a multi-proxy reconstruction of surface and bottom water conditions in Marguerite Bay, West Antarctic Peninsula (WAP), through the Holocene. A combination of sedimentological, diatom and foraminiferal records are, for the first time, presented together to infer a decline in UCDW influence within Marguerite Bay through the early to mid Holocene and the dominance of cyclic forcing in the late Holocene. Extensive glacial melt, limited sea ice and enhanced primary productivity between 9.7 and 7.0 ka BP is considered to be most consistent with persistent incursions of UCDW through Marguerite Trough. From 7.0 ka BP sea ice seasons increased and productivity decreased, suggesting that UCDW influence within Marguerite Bay waned, coincident with the equatorward migration of the Southern Hemisphere Westerly Winds (SWW). UCDW influence continued through the mid Holocene, and by 4.2 ka BP lengthy sea ice seasons persisted within Marguerite Bay. Intermittent melting and reforming of this sea ice within the late Holocene may be indicative of episodic incursions of UCDW into Marguerite Bay during this period. The cyclical changes in the oceanography within Marguerite Bay during the late Holocene is consistent with enhanced sensitively to ENSO forcing as opposed to the SWW-forcing that appears to have dominated the early to mid Holocene. Current measurements of the oceanography of the WAP continental shelf suggest that the system has now returned to the early Holocene-like oceanographic configuration reported here, which in both cases has been associated with rapid deglaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of stable isotope (d13C TOC and d15N TN) and elemental parameters (TOC, TN contents and TOC/TN ratios) of bulk organic matter (<200 µm) from sediment cores recovered from the Patagonian lake Laguna Potrok Aike (Argentina) in the framework of the ICDP deep drilling project PASADO provided insights into past changes in lake primary productivity and environmental conditions in South Patagonia throughout the last Glacial-Interglacial transition. Stratigraphically constrained cluster analyses of all proxy parameters suggest four main phases. From ca 26,100 to 17,300 cal. years BP, lacustrine phytoplankton was presumably the predominant organic matter source in an aquatic environment with low primary productivity rates. At around 17,300 cal. years BP, abrupt and distinct shifts of isotopic and elemental values indicate that the lacustrine system underwent a rapid reorganization. Lake primary productivity (phytoplankton and aquatic macrophytes) shows higher levels albeit with large variations during most of the deglaciation until 13,000 cal. years BP. The main causes for this development can be seen in improved growing conditions for primary producers because of deglacial warming in combination with expedient availability of nutrients and likely calm wind conditions. After 13,000 cal. years BP, decreased d13C TOC values, TOC, TN contents and TOC/TN ratios indicate that the lake approached a new state with reduced primary productivity probably induced by unfavourable growing conditions for primary producers like strengthened winds and reduced nutrient availability. The steady increase in d15N TN values presumably suggests limitation of nitrate supply for growth of primary producers resulting from a nutrient shortage after the preceding phase with high productivity. Nitrate limitation and consequent decreased lacustrine primary productivity continued into the early Holocene (10,970-8400 cal. years BP) as reflected by isotopic and elemental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Newly acquired bathymetric and seismic reflection data have revealed mass-transport deposits (MTDs) on the northeastern Cretan margin in the active Hellenic subduction zone. These include a stack of two submarine landslides within the Malia Basin with a total volume of approximately 4.6 km**3 covering an area of about 135 km**2. These two MTDs have different geometry, internal deformations and transport structures. The older and stratigraphic lower MTD is interpreted as a debrite that fills a large part of the Malia Basin, while the second, younger MTD, with an age of at least 12.6 cal. ka B.P., indicate a thick, lens-shaped, partially translational landslide. This MTD comprises multiple slide masses with internal structure varying from highly deformed to nearly undeformed. The reconstructed source area of the older MTD is located in the westernmost Malia Basin. The source area of the younger MTD is identified in multiple headwalls at the slope-basin-transition in 450 m water depth. Numerous faults with an orientation almost parallel to the southwest-northeast-trending basin axis occur along the northern and southern boundaries of the Malia Basin and have caused a partial steepening of the slope-basin-transition. The possible triggers for slope failure and mass-wasting include (i) seismicity and (ii) movement of the uplifting island of Crete from neotectonics of the Hellenic subduction zone, and (iii) slip of clay-mineral-rich or ash-bearing layers during fluid involvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the influence of fire and thermokarst in a boreal landscape, we investigated peat cores within and adjacent to a permafrost collapse feature on the Tanana River Floodplain of Interior Alaska. Radioisotope dating, diatom assemblages, plant macrofossils, charcoal fragments, and carbon and nitrogen content of the peat profile indicate ~600 years of vegetation succession with a transition from a terrestrial forest to a sedge-dominated wetland over 100 years ago, and to a Sphagnum-dominated peatland in approximately 1970. The shift from sedge to Sphagnum, and a decrease in the detrended tree-ring width index of black spruce trees adjacent to the collapse coincided with an increase in the growing season temperature record from Fairbanks. This concurrent wetland succession and reduced growth of black spruce trees indicates a step-wise ecosystem-level response to a change in regional climate. In 2001, fire was observed coincident with permafrost collapse and resulted in lateral expansion of the peatland. These observations and the peat profile suggest that future warming and/or increased fire disturbance could promote permafrost degradation, peatland expansion, and increase carbon storage across this landscape; however, the development of drought conditions could reduce the success of both black spruce and Sphagnum, and potentially decrease the long-term ecosystem carbon storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stable isotope records of four stalagmites dated by 19 TIMS uranium series ages are combined to produce master chronologies for delta(18)O and delta(13)C The delta(18)O records display good overall coherence, but considerable variation in detail. Variability in the delta(13)C records is greater, but general trends can still be discerned. This implies that too fine an interpretation of the structure of individual isotopic records can be unreliable. Speleothem delta(18)O values are demonstrated to show a positive relationship with temperature by comparing trends with other proxy records, but also to respond negatively to rainfall amount. Speleothem delta(13)C is considered to be most influenced by rainfall. The postglacial thermal optimum occur-red around 10.8 ka BP, which is similar in timing to Antarctica but up to 2000 years earlier than most Northern Hemisphere sites. Increasingly negative delta(18)O values after 7.5 ka BP indicate that temperatures declined to a late mid-Holocene minimum centred around 3 ka BP, but more positive values followed to mark a warm peak about 750 years ago which coincided with the 'Mediaeval Warm Period' of Europe. Low 5110 values at 325 years BP suggest cooling coincident with the 'Little Ice Age'. A marked feature of the delta(13)C record is an asymmetric periodicity averaging c. 2250 years and amplitude of c. 1.9parts per thousand. It is concluded that this is mainly driven by waterbalance variations with negative swings representing particularly wet intervals. The 5110 record shows a higher-frequency cyclicity with a period of c. 500 years and an amplitude of c. 0.25 parts per thousand. This is most likely to be temperature-driven, but some swings may have been amplified by precipitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fossil deposit excavated from the floor of Kids Cave, West Coast, South Island, New Zealand, is interpreted as having been primarily accumulated by New Zealand falcon Falco novaeseelandiae, with some contribution by Haast's eagle Harpagornis moorei. The fauna is rich: 3699 bones represented 41 bird species, two frog species, unspecified geckoes and skinks, and one bat species. Fossil deposition was mainly within the Last Glacial Maximum from about 22,000 cal yr bp to about 15,000 cal yr bp, with a marked change in sediment characteristics at the onset of the LGM's coldest period. Chronological control is given by three Uranium-series dates for a speleothem and radiocarbon AMS dating of four avian eggshell samples and one bone. The fauna is the first extensive predator accumulation of LGM age described from the West Coast of the South Island, and it indicates a palaeoenvironment of a mosaic of shrublands with forest patches. The onset of the coldest part of the LGM (Aurora 3 glacial advance, 19,500 - 19,000 cal yrs bp) saw marked climate cooling/drying affecting the site, but the avifauna indicates that although open-country taxa became more common in this period, some forest persisted nearby throughout the remainder of the LGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il sito archeologico di Arslantepe (provincia di Malatya, Turchia) rappresenta un caso di studio di potenziale interesse per l’interazione tra i mutamenti climatici e la storia della civiltà. Il sito, occupato quasi ininterrottamente per un periodo di tempo relativamente lungo (6250-2700 BP), ha fornito una grande quantità di reperti ossei, distribuiti lungo una stratigrafia archeologica relativamente dettagliata e supportata da datazioni al radiocarbonio. Tali reperti, indagati con le tecniche della geochimica degli isotopi stabili, possono costituire degli efficaci proxy paleoclimatici. In questo lavoro è stata studiata la composizione isotopica di 507 campioni di resti ossei umani e animali (prevalentemente pecore, capre, buoi). I rapporti isotopici studiati sono relativi a ossigeno (δ18Ocarb, δ18Oph), carbonio (δ13Ccarb, δ13Ccoll) e azoto (δ15N), misurati nella frazione minerale e organica dell’osso; la variabilità nel tempo di questi parametri, principalmente legati alla paleonutrizione, può essere correlata, direttamente o indirettamente, a cambiamenti dei parametri ambientali quali temperatura e umidità atmosferiche. I risultati indicano che la dieta degli animali selvatici e domestici di Arslantepe era quasi esclusivamente a base di piante a ciclo fotosintetico C3, generalmente tipiche di climi umidi o temperati. La presenza di piante C4, più tipiche di condizioni aride, sembrerebbe essere riconoscibile solamente nella dieta del bue (Bos taurus). La dieta umana era esclusivamente terrestre a base di cereali e carne di caprini con una percentuale esigua o del tutto assente di carne di maiale e bue. Dal punto di vista paleoclimatico il principale risultato del lavoro consiste nel riconoscimento della preservazione di un segnale paleoclimatico a lungo termine (δ18OW, composizione isotopica dell’ossigeno dell’acqua ingerita), che identifica un massimo relativo di umidità attorno al 5000 BP e che si correla, per andamento e ampiezza della variazione a record paleoclimatici di sedimenti lacustri collocati in regioni adiacenti all’area di studio. Sulla base del confronto dei tre segnali isotopici sono state inoltre riconosciute due anomalie climatiche siccitose a breve termine, apparentemente riferibili a due episodi di aridità a scala regionale documentati in letteratura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their sensitivity to climate variability, few of the abundant sinkhole lakes of Florida have been the subject of paleolimnological studies to discern patterns of change in aquatic communities and link them to climate drivers. However, deep sinkhole lakes can contain highly resolved paleolimnological records that can be used to track long-term climate variability and its interaction with effects of land-use change. In order to understand how limnological changes were regulated by regional climate variability and further modified by local land-use change in south Florida, we explored diatom assemblage variability over centennial and semi-decadal time scales in an ~11,000-yr and a ~150-yr sediment core extracted from a 21-m deep sinkhole lake, Lake Annie, on the protected property of Archbold Biological Station. We linked variance in diatom assemblage structure to changes in water total phosphorus, color, and pH using diatom-based transfer functions. Reconstructions suggest the sinkhole depression contained a small, acidic, oligotrophic pond ~11000–7000 cal yr BP that gradually deepened to form a humic lake by ~4000 cal yr BP, coinciding with the onset of modern precipitation regimes and the stabilization of sea-level indicated by corresponding palynological records. The lake then contained stable, acidophilous planktonic and benthic algal communities for several thousand years. In the early AD 1900s, that community shifted to one diagnostic of an even lower pH (~5.6), likely resulting from acid precipitation. Further transitions over the past 25 yr reflect recovery from acidification and intensified sensitivity to climate variability caused by enhanced watershed runoff from small drainage ditches dug during the mid-twentieth Century on the surrounding property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of siliceous microfossils of a 79 cm long peat sediment core from Highlands Hammock State Park, Florida, revealed distinct changes in the local hydrology during the past 2,500 years. The coring site is a seasonally inundated forest where water availability is directly influenced by precipitation. Diatoms, chrysophyte statospores, sponge remains and phytoliths were counted in 25 samples throughout the core. Based on the relative abundance of diatom species, the record was subdivided into four diatom assemblage zones, which mainly reflect the hydrological state of the study site. An age-depth relationship based on radiocarbon measurements of eight samples reveals a basal age of the core of approximately 2,500 cal. yrs. BP. Two significant changes of diatom assemblage composition were found that could be linked to both, natural and anthropogenic influences. At 700 cal. yrs. BP, the diatom record documents a shift from tychoplanktonicAulacoseira species to epiphytic Eunotia species, indicating a shortening of the hydroperiod, i.e. the time period during which a wetland is covered by water. This transition was interpreted as being triggered by natural climate change. In the middle of the twentieth century a second major turnover took place, at that time however, as a result of human impact on the park hydrology through the construction of dams and canals close to the study site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling studies predict that changes in radiocarbon (14C) reservoir ages of surface waters during the last deglacial episode will reflect changes in both atmospheric 14C concentration and ocean circulation including the Atlantic Meridional Overturning Circulation. Tests of these models require the availability of accurate 14C reservoir ages in well-dated late Quaternary time series. We here test two models using plateau-tuned 14C time series in multiple well-placed sediment core age-depth sequences throughout the lower latitudes of the Atlantic Ocean. 14C age plateau tuning in glacial and deglacial sequences provides accurate calendar year ages that differ by as much as 500-2500 years from those based on assumed global reservoir ages around 400 years. This study demonstrates increases in local Atlantic surface reservoir ages of up to 1000 years during the Last Glacial Maximum, ages that reflect stronger trades off Benguela and summer winds off southern Brazil. By contrast, surface water reservoir ages remained close to zero in the Cariaco Basin in the southern Caribbean due to lagoon-style isolation and persistently strong atmospheric CO2 exchange. Later, during the early deglacial (16 ka) reservoir ages decreased to a minimum of 170-420 14C years throughout the South Atlantic, likely in response to the rapid rise in atmospheric pCO2 and Antarctic temperatures occurring then. Changes in magnitude and geographic distribution of 14C reservoir ages of peak glacial and deglacial surface waters deviate from the results of Franke et al. (2008) but are generally consistent with those of the more advanced ocean circulation model of Butzin et al. (2012).