987 resultados para 3-valued model logic
Resumo:
Global analyzers traditionally read and analyze the entire program at once, in a nonincremental way. However, there are many situations which are not well suited to this simple model and which instead require reanalysis of certain parts of a program which has already been analyzed. In these cases, it appears inecient to perform the analysis of the program again from scratch, as needs to be done with current systems. We describe how the xed-point algorithms used in current generic analysis engines for (constraint) logic programming languages can be extended to support incremental analysis. The possible changes to a program are classied into three types: addition, deletion, and arbitrary change. For each one of these, we provide one or more algorithms for identifying the parts of the analysis that must be recomputed and for performing the actual recomputation. The potential benets and drawbacks of these algorithms are discussed. Finally, we present some experimental results obtained with an implementation of the algorithms in the PLAI generic abstract interpretation framework. The results show signicant benets when using the proposed incremental analysis algorithms.
Resumo:
Compilation techniques such as those portrayed by the Warren Abstract Machine(WAM) have greatly improved the speed of execution of logic programs. The research presented herein is geared towards providing additional performance to logic programs through the use of parallelism, while preserving the conventional semantics of logic languages. Two áreas to which special attention is given are the preservation of sequential performance and storage efficiency, and the use of low overhead mechanisms for controlling parallel execution. Accordingly, the techniques used for supporting parallelism are efficient extensions of those which have brought high inferencing speeds to sequential implementations. At a lower level, special attention is also given to design and simulation detail and to the architectural implications of the execution model behavior. This paper offers an overview of the basic concepts and techniques used in the parallel design, simulation tools used, and some of the results obtained to date.
Resumo:
This paper presents some fundamental properties of independent and-parallelism and extends its applicability by enlarging the class of goals eligible for parallel execution. A simple model of (independent) and-parallel execution is proposed and issues of correctness and efficiency discussed in the light of this model. Two conditions, "strict" and "non-strict" independence, are defined and then proved sufficient to ensure correctness and efñciency of parallel execution: if goals which meet these conditions are executed in parallel the solutions obtained are the same as those produced by standard sequential execution. Also, in absence of failure, the parallel proof procedure does not genérate any additional work (with respect to standard SLD-resolution) while the actual execution time is reduced. Finally, in case of failure of any of the goals no slow down will occur. For strict independence the results are shown to hold independently of whether the parallel goals execute in the same environment or in sepárate environments. In addition, a formal basis is given for the automatic compile-time generation of independent and-parallelism: compile-time conditions to efficiently check goal independence at run-time are proposed and proved sufficient. Also, rules are given for constructing simpler conditions if information regarding the binding context of the goals to be executed in parallel is available to the compiler.