928 resultados para 13077-025
Resumo:
Référence bibliographique : Weigert, 691
Resumo:
Référence bibliographique : Weigert, 706
Resumo:
BACKGROUND: The optimal strategy for percutaneous coronary intervention (PCI) of ST-segment elevation myocardial infarction (STEMI) in multi-vessel disease (MVD), i.e., multi-vessel PCI (MV-PCI) vs. PCI of the infarct-related artery only (IRA-PCI), still remains unknown. METHODS: Patients of the AMIS Plus registry admitted with an acute coronary syndrome were contacted after a median of 378 days (interquartile range 371-409). The primary end-point was all-cause death. The secondary end-point included all major adverse cardiovascular and cerebrovascular events (MACCE) including death, re-infarction, re-hospitalization for cardiac causes, any cardiac re-intervention, and stroke. RESULTS: Between 2005 and 2012, 8330 STEMI patients were identified, of whom 1909 (24%) had MVD. Of these, 442 (23%) received MV-PCI and 1467 (77%) IRA-PCI. While all-cause mortality was similar in both groups (2.7% both, p>0.99), MACCE was significantly lower after MV-PCI vs. IRA-PCI (15.6% vs. 20.0%, p=0.038), mainly driven by lower rates of cardiac re-hospitalization and cardiac re-intervention. Patients undergoing MV-PCI with drug-eluting stents had lower rates of all-cause mortality (2.1% vs. 7.4%, p=0.026) and MACCE (14.1% vs. 25.9%, p=0.042) compared with those receiving bare metal stents (BMS). In multivariate analysis, MV-PCI (odds ratio, OR 0.69, 95% CI 0.51-0.93, p=0.017) and comorbidities (Charlson index ≥ 2; OR 1.42, 95% CI 1.05-1.92, p=0.025) were independent predictors for 1-year MACCE. CONCLUSION: In an unselected nationwide real-world cohort, an approach using immediate complete revascularization may be beneficial in STEMI patients with MVD regarding MACCE, specifically when drug-eluting stents are used, but not regarding mortality. This has to be tested in a randomized controlled trial.
Resumo:
Misfolded polypeptide monomers may be regarded as the initial species of many protein aggregation pathways, which could accordingly serve as primary targets for molecular chaperones. It is therefore of paramount importance to study the cellular mechanisms that can prevent misfolded monomers from entering the toxic aggregation pathway and moreover rehabilitate them into active proteins. Here, we produced two stable misfolded monomers of luciferase and rhodanese, which we found to be differently processed by the Hsp70 chaperone machinery and whose conformational properties were investigated by biophysical approaches. In spite of their monomeric nature, they displayed enhanced thioflavin T fluorescence, non-native β-sheets, and tertiary structures with surface-accessible hydrophobic patches, but differed in their conformational stability and aggregation propensity. Interestingly, minor structural differences between the two misfolded species could account for their markedly different behavior in chaperone-mediated unfolding/refolding assays. Indeed, only a single DnaK molecule was sufficient to unfold by direct clamping a misfolded luciferase monomer, while, by contrast, several DnaK molecules were necessary to unfold the more resistant misfolded rhodanese monomer by a combination of direct clamping and cooperative entropic pulling.
Resumo:
We have studied ischemic tolerance induced by the serine protease thrombin in two different models of experimental ischemia. In organotypic hippocampal slice cultures, we demonstrate that incubation with low doses of thrombin protects neurons against a subsequent severe oxygen and glucose deprivation. L-JNKI1, a highly specific c-jun N-terminal kinase (JNK) inhibitor, and a second specific JNK inhibitor, SP600125, prevented thrombin preconditioning (TPC). We also show that the exposure to thrombin increases the level of phosphorylated c-jun, the major substrate of JNK. TPC, in vivo, leads to significantly smaller lesion sizes after a 30-min middle cerebral artery occlusion (MCAo), and the preconditioned mice were better off in the three tests used to evaluate functional recovery. In accordance with in vitro results, TPC in vivo was prevented by administration of L-JNKI1, supporting a role for JNK in TPC. These results, from two different TPC models and with two distinct JNK inhibitors, show that JNK is likely to be involved in TPC.
Resumo:
In six young obese women (mean weight 85 +/- 3 kg) with a childhood history of obesity, and in six young nonobese women (mean weight 55 +/- 2 kg), the energy expenditure was measured during 24 h in a respiratory chamber with a maintenance energy intake. The next day, the thermogenic response to a mixed meal was investigated by using an open circuit indirect calorimetry hood system. In addition, five of the same obese women were similarly studied after a mean weight loss of 12.1 kg (14% of initial body weight) consecutive to an 11-wk hypocaloric diet (protein-supplemented modified fast). Expressed in absolute terms, the total 24 h and basal energy expenditures were found to be significantly greater in the obese (2208 +/- 105 and 1661 +/- 56 kcal/24 h, respectively) than in the controls (1746 +/- 61 and 1230 +/- 40 kcal/24 h, respectively). After weight loss, both the total 24-h and the basal energy expenditures were significantly reduced (2009 +/- 99 kcal/24 h and 1423 +/- 43 kcal/24 h respectively), but both values were still greater than that of the control subjects. The thermogenic response to the mixed meal (a liquid diet containing 17, 54, and 29% as protein, carbohydrate, and lipid calories, respectively, and an energy level determined to cover 60% of the basal energy expenditure computed for 24 h) was found to be significantly reduced in the obese as compared to controls (ie, 7.6 +/- 0.4% versus 9.5 +/- 0.4% of the energy content of the load, respectively, p less than 0.025). After weight loss, the postprandial thermogenesis of the obese was still markedly reduced (ie, 6.2 +/- 0.8%). Both before and after weight loss, the relative increase in diurnal urinary norepinephrine excretion was found to be lower in the obese than in controls, when compared to the nocturnal values. These results show that the greater 24 h energy expenditure of obese women is entirely due to their higher basal metabolic rate. The lower thermogenic response to the meal in the obese supports the concept of a thermogenic defect which can favor energy gain; furthermore, the unchanged response after weight loss in the obese suggests that the thermogenic defect may be a cause rather than a consequence of obesity.
Resumo:
Artikkeli perustuu Kielitieteen päivillä 3.5.2002 pidettyyn esitelmään
Resumo:
Kirjoitus perustuu esitelmään Yliopistopainon 30-vuotisjuhlassa 17.1.2003
Resumo:
Kirjoitus perustuu Kielitieteen päivillä Helsingissä 4.5.2002 pidettyyn esitelmään