989 resultados para 128-794
Resumo:
A set of 114 samples from the sediment surface of the Atlantic, eastern Pacific and western Indian sectors of the Southern Ocean has been analyzed for 230Th and biogenic silica. Maps of opal content, Th-normalized mass flux, and Th-normalized biogenic opal flux into the sediment have been derived. Significant differences in sedimentation patterns between the regions can be detected. The mean bulk vertical fluxes integrated into the sediment in the open Southern Ocean are found in a narrow range from 2.9 g/m**2 yr (Eastern Weddell Gyre) to 15.8 g/m**2 yr (Indian sector), setting upper and lower limits to the vertically received fraction of open ocean sediments. The silica flux to sediments of the Atlantic sector of the Southern Ocean is found to be 4.2 ± 1.4 * 10**11 mol/yr, just one half of the last estimate. This adjustment represents 6% of the output term in the global marine silica budget.
Resumo:
To detect and track the impact of large-scale environmental changes in a the transition zone between the northern North Atlantic and the central Arctic Ocean, and to determine experimentally the factors controlling deep-sea biodiversity, the Alfred- Wegener-Institute for Polar and Marine Research (AWI) established the deep-sea long-term observatory HAUSGARTEN, which constitutes the first, and until now only open-ocean long-term station in a polar region. Virtually undisturbed sediment samples have been taken using a video-guided multiple corer (MUC) at 13 HAUSGARTEN stations along a bathymetric (1,000 - 4,000 m water depth) and a latitudinal transect in 2,500 m water depth as well as two stations at 230 and 1,200 m water depth within the framework of the KONGHAU project. Various biogenic sediment compounds were analyzed to estimate the input of organic matter from phytodetritus sedimentation, benthic activities (e.g. bacterial exoenzymatic activity), and the total biomass of the smallest sediment-inhabiting organisms (size range: bacteria to meiofauna).
Resumo:
For the investigation of organic carbon fluxes reaching the seafloor, oxygen microprofiles were measured at 145 sites in different sub-regions of the Southern Ocean. At eleven sites, an in situ oxygen microprofiler was deployed for the measurement of oxygen profiles and the calculation of organic carbon fluxes. At four sites, both in situ and ex situ data were determined for high latitudes. Based on this dataset as well as on previous published data, a relationship was established for the estimation of fluxes derived by ex situ measured O2 profiles. The fluxes of labile organic matter range from 0.5 to 37.1 mgC m**2/day. The high values determined by in situ measurements were observed in the Polar Front region (water depth of more than 4290 m) and are comparable to organic matter fluxes observed for high-productivity, upwelling areas like off West Africa. The oxygen penetration depth, which reflects the long-term organic matter flux to the sediment, was correlated with assemblages of key diatom species. In the Scotia Sea (~3000 m water depth), oxygen penetration depths of less than 15 cm were observed, indicating high benthic organic carbon fluxes. In contrast, the oxic zone extends down to several decimeters in abyssal sediments of the Weddell Sea and the southeastern South Atlantic. The regional pattern of organic carbon fluxes derived from micro-sensor data suggest that episodic and seasonal sedimentation pulses are important for the carbon supply to the seafloor of the deep Southern Ocean.
Resumo:
Volcanic rocks recovered from the Japan Sea during ODP Legs 127 and 128 were analyzed by 40Ar-39Ar whole-rock stepwise-heating experiments. All three experiments on samples from Site 795 in the Japan Basin revealed disturbed age spectra, but they are consistent with crystallization ages of 15 to 25 Ma for the samples. At Site 797 in the Yamato Basin, three of the five samples showed plateau ages of 18-19 Ma. At Site 794 in the northern Yamato Basin, three of the five samples revealed concordant age spectra of 20-21 Ma. The radiometric age results are consistent with the estimated ages for the oldest sediments at Site 797 based on the biostratigraphy, but are significantly older than those of the oldest sediments at Site 794. However, the radiometric ages are concordant with previously inferred ages for the formation of the Japan Sea floor based on radiometric age data from dredged igneous rocks from the Japan Sea. The present results indicate that formation of the Japan Sea floor started at least 19-20 Ma ago and give more precise age constraints.
Resumo:
Abundant and various diagenetic carbonates were recovered from a 1084-m-thick, Quaternary to lower Miocene section at ODP Site 799 in the Japan Sea. Petrographic, XRD, SEM, EDS-chemical, and isotopic analyses revealed wide variations in occurrence and textural relations and complex mineralogy and chemistry. Diagenetic carbonates include calcite, calcium-rich rhodochrosite, iron- and manganese-rich magnesite, iron- and manganese-rich dolomite and ankerite, and iron- and manganeserich lansfordite (hydrous Mg-carbonate). Rhodochrosite commonly occurs as small, solid nodules and semi-indurated, thin layers in bioturbated, mottled sediments of Units I and II (late Miocene to Quaternary). Lansfordite occurs as unindurated nodules and layers in Unit II (late Miocene and Pliocene), whereas magnesite forms indurated beds a few centimeters thick in slightly bioturbated-to-faintly laminated sediments of Unit III (middle and late Miocene). Some rhodochrosite nodules have dark-colored, pyritic cores, and some pyrite-rhodochrosite nodules are overgrown by and included within magnesite beds. Dolomite and ankerite tend to form thick beds (>10 cm) in bedded to laminated sediments of Units III, IV, and V (early to late Miocene). Calcite occurs sporadically throughout the Site 799 sediments. The d18O values of carbonates and the interstitial waters, and the measured geothermal gradient indicate that almost all of the Site 799 carbonates are not in isotopic equilibrium with the ambient waters, but were precipitated in the past when the sediments were at shallower depths. Depths of precipitation obtained from the d18O of carbonates span from 310 to 510 mbsf for magnesite and from 60 to 580 mbsf for dolomite-ankerite. Rhodochrosite and calcite are estimated to have formed within sediments at depths shallower than 80 mbsf. Diagenetic history in the Site 799 sediments have been determined primarily by the environment of deposition; in particular, by the oxidation-reduction state of the bottom waters and the alkalinity level of the interstitial waters. Under the well-oxygenated bottom-water conditions in the late Miocene and Pliocene, manganese initially accumulated on the seafloor as hydrogenous oxides and subsequently was mobilized and reprecipitated as rhodochrosite within the shallow sulfate-reduction, sub-oxic zone. Precipitation of lansfordite occurred in the near-surface sediments with abundant organic carbon and an extremely high alkalinity during the latest Miocene and Pliocene. The lansfordite was transformed to magnesite upon burial in the depth interval 310 to 510 mbsf. Dolomite first precipitated at shallow depths in Mn-poor, anoxic, moderately biocalcareous sediments of early to late Miocene. With increasing temperature and depth, the dolomite recrystallized and reequilibrated with ambient waters at depths below about 400 mbsf.
Resumo:
Sediment whole-round cores from a dedicated hole (798B) were obtained for detailed microbiological analysis, down to 518 m below the seafloor (mbsf). These sediments have characteristic bacterial profiles in the top 6 mbsf, with high but rapidly decreasing bacterial populations (total and dividing bacteria, and concentrations of different types of viable heterotrophic bacteria) and potential bacterial activities. Rates of thymidine incorporation into bacterial DNA and anaerobic sulfate reduction are high in the surface sediments and decrease rapidly down to 3 mbsf. Methanogenesis from CO2/H2 peaks below the maximum in sulfate reduction and although it decreases markedly down the core, is present at low rates at all but one depth. Consistent with these activities is the removal of pore-water sulfate, methane gas production, and accumulation of reduced sulfide species. Rates of decrease in bacterial populations slow down below 6 mbsf, and there are some distinct increases in bacterial populations and activities that continue over considerable depth intervals. These include a large and significant increase in total heterotrophic bacteria below 375 mbsf, which corresponds to an increase in the total bacterial population, bacterial viability, a small increase in potential rates of sulfate reduction, and the presence of thermogenic methane and other gases. Bacterial distributions seem to be controlled by the availability of terminal electron acceptors (e.g., sulfate), the bioavailability of organic carbon (which may be related to the dark/light bands within the sediment), and biological and geothermal methane production. Significant bacterial populations are present even in the deepest samples (518 mbsf) and hence it seems likely that bacteria may continue to be present and active much deeper than the sediments studied here. These results confirm and extend our previous results of bacterial activity within deep sediments of the Peru Margin from Leg 112, and to our knowledge this is the first comprehensive report of the presence of active bacterial populations from the sediment surface to in excess of 500 mbsf and sediments > 4 m.y. old.
Resumo:
Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf. The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.
Resumo:
X-ray diffraction data during adsorption of water vapor on Na- and Ca-montmorillonites show that interlayer expansion is continuous but nonuniform. X-ray and adsorption isotherm data indicate an ice-like configuration of water molecules is completed with the fourth layer of interlayer water for the Ca-clay; a fifth layer intrudes to give a less ordered structure. Data for the Na-clay indicate a laminar stacking arrangement for up to three layers of interlayer water. The Na-clay adsorbs more than twice as much water and undergoes four times as large a volume change than the Ca-clay. The free energy change during adsorption of water vapor on the Ca-clay is nearly twice that for the Na-clay. Free energy changes with increasing relative pressure reflect interlayer expansion increments.