999 resultados para 1175


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A time-dependent climate-change experiment with a coupled ocean–atmosphere general circulation model has been used to study changes in the occurrence of drought in summer in southern Europe and central North America. In both regions, precipitation and soil moisture are reduced in a climate of greater atmospheric carbon dioxide. A detailed investigation of the hydrology of the model shows that the drying of the soil comes about through an increase in evaporation in winter and spring, caused by higher temperatures and reduced snow cover, and a decrease in the net input of water in summer. Evaporation is reduced in summer because of the drier soil, but the reduction in precipitation is larger. Three extreme statistics are used to define drought, namely the frequency of low summer precipitation, the occurrence of long dry spells, and the probability of dry soil. The last of these is arguably of the greatest practical importance, but since it is based on soil moisture, of which there are very few observations, the authors’ simulation of it has the least confidence. Furthermore, long time series for daily observed precipitation are not readily available from a sufficient number of stations to enable a thorough evaluation of the model simulation, especially for the frequency of long dry spells, and this increases the systematic uncertainty of the model predictions. All three drought statistics show marked increases owing to the sensitivity of extreme statistics to changes in their distributions. However, the greater likelihood of long dry spells is caused by a tendency in the character of daily rainfall toward fewer events, rather than by the reduction in mean precipitation. The results should not be taken as firm predictions because extreme statistics for small regions cannot be calculated reliably from the output of the current generation of GCMs, but they point to the possibility of large increases in the severity of drought conditions as a consequence of climate change caused by increased CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subantarctic mode water (SAMW) has been shown to be a good indicator of anthropogenic climate change in coupled climate models. SAMW in a coupled climate model and the response of modeled SAMW to increasing CO2 are examined in detail. How SAMW adjusts from climatological values toward a new equilibrium in the coupled model, with different climatological temperature and salinity properties, is shown. The combined formation rate of SAMW and Antarctic intermediate water is calculated as approximately 18 Sv (Sv ≡ 106 m3 s−1) in the Indian sector of the Southern Ocean, slightly lower than climatological values would suggest. When forced with increasing CO2, SAMW is produced at a similar rate but at lower densities. This result suggests that the rate of heat uptake in this part of the ocean will be unchanged by anthropogenic forcing. The important signal in the response of SAMW is the shift to colder and fresher values on isopycnals that is believed to be related to changes in thermodynamic surface forcing. It is shown that, given uniform forcing, SAMW is expected to enhance the signal relative to other water masses. Independent increases in surface heating or freshwater forcing can produce changes similar to those observed, but the two different types of forcing are distinguishable using separate forcing experiments, hodographs, and passive anomaly tracers. The changes in SAMW forced by increasing CO2 are dominated by surface heating, but changes to freshwater fluxes are also important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Empirical studies using satellite data and radiosondes have shown that precipitation increases with column water vapor (CWV) in the tropics, and that this increase is much steeper above some critical CWV value. Here, eight years of 1-min-resolution microwave radiometer and optical gauge data at Nauru Island are analyzed to better understand the relationships among CWV, column liquid water (CLW), and precipitation at small time scales. CWV is found to have large autocorrelation times compared with CLW and precipitation. Before precipitation events, CWV increases on both a synoptic-scale time period and a subsequent shorter time period consistent with mesoscale convective activity; the latter period is associated with the highest CWV levels. Probabilities of precipitation increase greatly with CWV. Given initial high CWV, this increased probability of precipitation persists at least 10–12 h. Even in periods of high CWV, however, probabilities of initial precipitation in a 5-min period remain low enough that there tends to be a lag before the start of the next precipitation event. This is consistent with precipitation occurring stochastically within environments containing high CWV, with the latter being established by a combination of synoptic-scale and mesoscale forcing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wagner and Graf (2010) derive a population evolution equation for an ensemble of convective plumes, an analogue with the Lotka–Volterra equation, from the energy equations for convective plumes provided by Arakawa and Schubert (1974). Although their proposal is interesting, as the present note shows, there are some problems with their derivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent study, Williams introduced a simple modification to the widely used Robert–Asselin (RA) filter for numerical integration. The main purpose of the Robert–Asselin–Williams (RAW) filter is to avoid the undesired numerical damping of the RA filter and to increase the accuracy. In the present paper, the effects of the modification are comprehensively evaluated in the Simplified Parameterizations, Primitive Equation Dynamics (SPEEDY) atmospheric general circulation model. First, the authors search for significant changes in the monthly climatology due to the introduction of the new filter. After testing both at the local level and at the field level, no significant changes are found, which is advantageous in the sense that the new scheme does not require a retuning of the parameterized model physics. Second, the authors examine whether the new filter improves the skill of short- and medium-term forecasts. January 1982 data from the NCEP–NCAR reanalysis are used to evaluate the forecast skill. Improvements are found in all the model variables (except the relative humidity, which is hardly changed). The improvements increase with lead time and are especially evident in medium-range forecasts (96–144 h). For example, in tropical surface pressure predictions, 5-day forecasts made using the RAW filter have approximately the same skill as 4-day forecasts made using the RA filter. The results of this work are encouraging for the implementation of the RAW filter in other models currently using the RA filter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cloud-resolving numerical simulations of airflow over a diurnally heated mountain ridge are conducted to explore the mechanisms and sensitivities of convective initiation under high pressure conditions. The simulations are based on a well-observed convection event from the Convective and Orographically Induced Precipitation Study (COPS) during summer 2007, where an isolated afternoon thunderstorm developed over the Black Forest mountains of central Europe, but they are idealized to facilitate understanding and reduce computational expense. In the conditionally unstable but strongly inhibited flow under consideration, sharp horizontal convergence over the mountain acts to locally weaken the inhibition and moisten the dry midtroposphere through shallow cumulus detrainment. The onset of deep convection occurs not through the deep ascent of a single updraft but rather through a rapid succession of thermals that are vented through the mountain convergence zone into the deepening cloud mass. Emerging thermals rise through the saturated wakes of their predecessors, which diminishes the suppressive effects of entrainment and allows for rapid glaciation above the freezing level as supercooled cloud drops rime onto preexisting ice particles. These effects strongly enhance the midlevel cloud buoyancy and enable rapid ascent to the tropopause. The existence and vigor of the convection is highly sensitive to small changes in background wind speed U0, which controls the strength of the mountain convergence and the ability of midlevel moisture to accumulate above the mountain. Whereas vigorous deep convection develops for U0 = 0 m s−1, deep convection is completely eliminated for U0 = 3 m s−1. Although deep convection is able to develop under intermediate winds (U0 = 1.5 m s−1), its formation is highly sensitive to small-amplitude perturbations in the initial flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of specific humidity is very highly correlated with column water vapor (CWV) and has a maximum of both total and fractional variance captured in the lower free troposphere (around 800 hPa). Moisture profiles conditionally averaged on precipitation show a strong association between rainfall and moisture variability in the free troposphere and little boundary layer variability. A sharp pickup in precipitation occurs near a critical value of CWV, confirming satellite-based studies. A lag–lead analysis suggests it is unlikely that the increase in water vapor is just a result of the falling precipitation. To investigate mechanisms for the CWV–precipitation relationship, entraining plume buoyancy is examined in sonde data and simplified cases. For several different mixing schemes, higher CWV results in progressively greater plume buoyancies, particularly in the upper troposphere, indicating conditions favorable for deep convection. All other things being equal, higher values of lower-tropospheric humidity, via entrainment, play a major role in this buoyancy increase. A small but significant increase in subcloud layer moisture with increasing CWV also contributes to buoyancy. Entrainment coefficients inversely proportional to distance from the surface, associated with mass flux increase through a deep lower-tropospheric layer, appear promising. These yield a relatively even weighting through the lower troposphere for the contribution of environmental water vapor to midtropospheric buoyancy, explaining the association of CWV and buoyancy available for deep convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moist convection is well known to be generally more intense over continental than maritime regions, with larger updraft velocities, graupel, and lightning production. This study explores the transition from maritime to continental convection by comparing the trends in Tropical Rainfall Measuring Mission (TRMM) radar and microwave (37 and 85 GHz) observations over islands of increasing size to those simulated by a cloud-resolving model. The observed storms were essentially maritime over islands of <100 km2 and continental over islands >10 000 km2, with a gradual transition in between. Equivalent radar and microwave quantities were simulated from cloud-resolving runs of the Weather Research and Forecasting model via offline radiation codes. The model configuration was idealized, with islands represented by regions of uniform surface heat flux without orography, using a range of initial sounding conditions without strong horizontal winds or aerosols. Simulated storm strength varied with initial sounding, as expected, but also increased sharply with island size in a manner similar to observations. Stronger simulated storms were associated with higher concentrations of large hydrometeors. Although biases varied with different ice microphysical schemes, the trend was similar for all three schemes tested and was also seen in 2D and 3D model configurations. The successful reproduction of the trend with such idealized forcing supports previous suggestions that mesoscale variation in surface heating—rather than any difference in humidity, aerosol, or other aspects of the atmospheric state—is the main reason that convection is more intense over continents and large islands than over oceans. Some dynamical storm aspects, notably the peak rainfall and minimum surface pressure low, were more sensitive to surface forcing than to the atmospheric sounding or ice scheme. Large hydrometeor concentrations and simulated microwave and radar signatures, however, were at least as sensitive to initial humidity levels as to surface forcing and were more sensitive to the ice scheme. Issues with running the TRMM simulator on 2D simulations are discussed, but they appear to be less serious than sensitivities to model microphysics, which were similar in 2D and 3D. This supports the further use of 2D simulations to economically explore modeling uncertainties.