973 resultados para 1. Plasma Physics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear dynamics of modulated electrostatic wavepackets propagating in negativeion plasmas is investigated from first principles. A nonlinear SchrÃdinger equation is derived by adopting a multiscale technique. The stability of breather- like (bright envelope soliton) structures, considered as a precursor to freak wave (rogue wave) formation, is investigated and then tested via numerical simulations.<br/>

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laser-target interaction represents a very promising field for several potential applications,<br/>from the nuclear physics to the radiobiology. However optically accelerated particle beams are<br/>characterized by some extreme features, not suitable for many applications. Therefore, beyond<br/>the improvements at the laser-target interaction level, many researchers are spending their efforts<br/>for the development of specific beam transport devices in order to obtain controlled and<br/>reproducible output beams.In this background, the ELIMED (ELI-Beamlines MEDical applications)<br/>project was born. Within 2017, a dedicated transport beam-line coupled with dosimetric<br/>systems, named ELIMED, will be installed at the Extreme Light Infrastructure Beamlines<br/>(ELI-Beamlines) facility in Prague (CZ),as a part of the ELIMAIA (ELI Multidisciplinary Applications<br/>of laserâA ¸SIon Acceleration) beamline

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis presents experimental results, simulations, and theory on turbulence excited in magnetized plasmas near the ionosphereâs upper hybrid layer. The results include: The first experimental observations of super small striations (SSS) excited by the High-Frequency Auroral Research Project (HAARP) The first detection of high-frequency (HF) waves from the HAARP transmitter over a distance of 16x10^3 km The first simulations indicating that upper hybrid (UH) turbulence excites electron Bernstein waves associated with all nearby gyroharmonics Simulation results that indicate that the resulting bulk electron heating near the upper hybrid (UH) resonance is caused primarily by electron Bernstein waves parametrically excited near the first gyroharmonic. On the experimental side we present two sets of experiments performed at the HAARP heating facility in Alaska. In the first set of experiments, we present the first detection of super-small (cm scale) striations (SSS) at the HAARP facility. We detected density structures smaller than 30 cm for the first time through a combination of satellite and ground based measurements. In the second set of experiments, we present the results of a novel diagnostic implemented by the Ukrainian Antarctic Station (UAS) in Verdansky. The technique allowed the detection of the HAARP signal at a distance of nearly 16 Mm, and established that the HAARP signal was injected into the ionospheric waveguide by direct scattering off of dekameter-scale density structures induced by the heater. On the theoretical side, we present results of Vlasov simulations near the upper hybrid layer. These results are consistent with the bulk heating required by previous work on the theory of the formation of descending artificial ionospheric layers (DIALs), and with the new observations of DIALs at HAARPâs upgraded effective radiated power (ERP). The simulations that frequency sweeps, and demonstrate that the heating changes from a bulk heating between gyroharmonics, to a tail acceleration as the pump frequency is swept through the fourth gyroharmonic. These simulations are in good agreement with experiments. We also incorporate test particle simulations that isolate the effects of specific wave modes on heating, and we find important contributions from both electron Bernstein waves and upper hybrid waves, the former of which have not yet been detected by experiments, and have not been previously explored as a driver of heating. In presenting these results, we analyzed data from HAARP diagnostics and assisted in planning the second round of experiments. We integrated the data into a picture of experiments that demonstrated the detection of SSS, hysteresis effects in simulated electromagnetic emission (SEE) features, and the direct scattering of the HF pump into the ionospheric waveguide. We performed simulations and analyzed simulation data to build the understanding of collisionless heating near the upper hybrid layer, and we used these simulations to show that bulk electron heating at the upper hybrid layer is possible, which is required by current theories of DAIL formation. We wrote a test particle simulation to isolate the effects of electron Bernstein waves and upper hybrid layers on collisionless heating, and integrated this code to work with both the output of Vlasov simulations and the input for simulations of DAIL formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to anthropogenic activities, toxic metals still represent a threat for various marine organisms. Metallothionein (MT) and cadmium concentration in gills, liver, and kidney tissues and cadmium partitioning in soluble (cytosol) and insoluble fractions of mentioned tissues of Persian sturgeon (Acipenser persicus) were determined following exposure to sub-lethal levels of waterborne cadmium (Cd) (50, 400 and 1000 μg L-1) after 1, 2, 4 and 14 days. The increases of MT from background levels in comparison to controls were 4.6-, 3-, and 2.8-fold for kidney, liver, and gills, respectively after 14 days. The matallothionein concentration in liver was in the range of 56.89-168.44 μgL-1 and for kidney and gills, 39.78-189.30 and 28.15-91.20 μgL-1, respectively. The results showed that MT level change in the kidney is time and concentration dependent. Also, cortisol measurement revealed elevation at the day 1 of exposure and that followed by MT increase in the liver. Cd concentrations in the cytosol of experimental tissues were measured and the results indicated that Cd levels in the cytosol of liver, kidney, and gills increased 240.71-, 32.05-, and 40.16-fold, respectively 14 days after exposure to 1000 μgL-1 Cd. The accumulation of Cd in cytosol of tissues is in the order of liver > gills > kidney. Spearman correlation coefficients showed the MT content in kidney is correlated with Cd concentration, the value of which is more than in liver and gills. Thus, kidney can be considered as a tissue indicator in Acipenser persicus for waterborne Cd contamination. Also, tissue metal accumulations (gills, liver, kidney and muscle) in Persian sturgeon (Acipenser persicus) were compared following exposure to sublethal levels of waterborne Cd (50, 400 and 1000 μg L-1) after periods of 1, 2, 4 and 14 days. Meanwhile, the trends of Cd concentration increase in different tissues during the exposure periods and concentrations were modelled as equations. The obtained results indicate that at the end of 4 and 14 days of exposure, total tissue cadmium concentration followed the pattern: liver> gill> kidney> muscle. Calculation of bioconcentration factor (BCF) after 14 days exposure showed that at low and high concentrations, highest BCFs were found in kidney and liver, respectively. According to the results, the accumulation capacity of muscle was the lowest at all exposure concentrations. The hematological parameters including osmolarity, total protein, cortisol and glucose of plasma were measured, too. Total protein of plasma was in the range of 416.90-1068.10 mg dl-1 plasma.Total protein decreased not significantly (Pâ¥0.05) after exposure to Cd. Cortisol increased after 1 day exposure that followed by significant (Pâ¤0.05) elevation of glucose. The range of cortisol was very vast and it was determined between 0.03 to 16.21 ng mL-1. The content of plasma osmolarity was in the range of 282.33-294.20 mOsmol L-1.Osmolarity of treated fish plasma showed no significant decrease (Pâ¥0.05). Total protein in gills, liver, and kidney showed that at high concentrations of metal, protein content decreased significantly (Pâ¤0.05) in the liver after 4 and 14 days exposure. Thus, total protein of liver and glucose of plasma can be used as general biomarkers of exposure to Cd. Also, the metallothionein and cadmium were measured in gills, kidney and liver of 8 wild Persian sturgeon caught in coast of Guilan Province. According to the results, the concentration of metallothionein was in the range of 45.87-154.66 microgram per liter with the maximum and minimum concentrations in liver and gills, respectively. The trend of cadmium concentration in cytosol of tissues was: liver> kidney> gills. The results of Spearman correlation test showed that there was a significant positive correlation between metallothionein and cadmium in cytosol of liver (r2= 0.850, p⤠0.01). In the kidney, the correlation between cadmium and metallothionein was significantly positive (r2= 0.731, p⥠0.05). But there was not such significant correlation in the gills (p⥠0.05).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Low pressure radio frequency plasma-assisted deposition of 1-isopropyl-4-methyl-1,4-cyclohexadiene thin films was investigated for different polymerization conditions. Transparent, environmentally stable and flexible, these organic films are promising candidates for organic photovoltaics (OPV) and flexible electronics applications, where they can be used as encapsulating coatings and insulating interlayers. The effect of deposition RF power on optical properties of the films was limited, with all films being optically transparent, with refractive indices in a range of 1.57â1.58 at 500 nm. The optical band gap (Eg) of ~3 eV fell into the insulating Eg region, decreasing for films fabricated at higher RF power. Independent of deposition conditions, the surfaces were smooth and defect-free, with uniformly distributed morphological features and average roughness between 0.30 nm (at 10 W) and 0.21 nm (at 75 W). Films fabricated at higher deposition power displayed enhanced resistance to delamination and wear, and improved hardness, from 0.40 GPa for 10 W to 0.58 GPa for 75 W at a load of 700 μN. From an application perspective, it is therefore possible to tune the mechanical and morphological properties of these films without compromising their optical transparency or insulating property.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene) using radio frequency (RF) plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of OâH and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfacesâ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Poly(linalool) thin films were fabricated using RF plasma polymerisation. All films were found to be smooth, defect-free surfaces with average roughness of 0.44 nm. The FTIR analysis of the polymer showed a notable reduction in âOH moiety and complete dissociation of C=C unsaturation compared to the monomer, and presence of a ketone band absent from the spectrum of the monomer. Poly(linalool) were characterised by chain branching and a large quantity of short polymer chains. Films were optically transparent, with refractive index and extinction coefficient of 1.55 and 0.001 (at 500 nm) respectively, indicating a potential application as an encapsulating (protective) coating for circuit boards. The optical band gap was calculated to be 2.82 eV, which is in the semiconducting energy gap region.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 mu m to 1.5 mu m range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N-2 How rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54 mu m GaInNAs/GaAs QWs was kept as comparable as that in 1.31 mu m.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Theories and numerical modeling are fundamental tools for understanding, optimizing and designing present and future laser-plasma accelerators (LPAs). Laser evolution and plasma wave excitation in a LPA driven by a weakly relativistically intense, short-pulse laser propagating in a preformed parabolic plasma channel, is studied analytically in 3D including the effects of pulse steepening and energy depletion. At higher laser intensities, the process of electron self-injection in the nonlinear bubble wake regime is studied by means of fully self-consistent Particle-in-Cell simulations. Considering a non-evolving laser driver propagating with a prescribed velocity, the geometrical properties of the non-evolving bubble wake are studied. For a range of parameters of interest for laser plasma acceleration, The dependence of the threshold for self-injection in the non-evolving wake on laser intensity and wake velocity is characterized. Due to the nonlinear and complex nature of the Physics involved, computationally challenging numerical simulations are required to model laser-plasma accelerators operating at relativistic laser intensities. The numerical and computational optimizations, that combined in the codes INF&RNO and INF&RNO/quasi-static give the possibility to accurately model multi-GeV laser wakefield acceleration stages with present supercomputing architectures, are discussed. The PIC code jasmine, capable of efficiently running laser-plasma simulations on Graphics Processing Units (GPUs) clusters, is presented. GPUs deliver exceptional performance to PIC codes, but the core algorithms had to be redesigned for satisfying the constraints imposed by the intrinsic parallelism of the architecture. The simulation campaigns, run with the code jasmine for modeling the recent LPA experiments with the INFN-FLAME and CNR-ILIL laser systems, are also presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present the observations of energetic neutral atoms (ENAs) produced at the lunar surface in the Earth's magnetotail. When the Moon was located in the terrestrial plasma sheet, Chandrayaan-1 Energetic Neutrals Analyzer (CENA) detected hydrogen ENAs from the Moon. Analysis of the data from CENA together with the Solar Wind Monitor (SWIM) onboard Chandrayaan-1 reveals the characteristic energy of the observed ENA energy spectrum (the e-folding energy of the distribution function) ∼100 eV and the ENA backscattering ratio (defined as the ratio of upward ENA flux to downward proton flux) <∼0.1. These characteristics are similar to those of the backscattered ENAs in the solar wind, suggesting that CENA detected plasma sheet particles backscattered as ENAs from the lunar surface. The observed ENA backscattering ratio in the plasma sheet exhibits no significant difference in the Southern Hemisphere, where a large and strong magnetized region exists, compared with that in the Northern Hemisphere. This is contrary to the CENA observations in the solar wind, when the backscattering ratio drops by ∼50% in the Southern Hemisphere. Our analysis and test particle simulations suggest that magnetic shielding of the lunar surface in the plasma sheet is less effective than in the solar wind due to the broad velocity distributions of the plasma sheet protons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.