984 resultados para (Pale) dolomitic carbonate
Resumo:
We measured carbonate concentrations in Pleistocene and Pliocene sediments deposited at Sites 709, 710, and 711. Carbonate concentrations exhibit low-amplitude, long-wave length (300-400 k.y. period) variations at the shallowest sites (709 and 710). Before 2.47 Ma, all three sites exhibit higher frequency (100 k.y. period) variations. The deepest site (711) exhibited low-amplitude variations and very low concentrations up to the Gauss/Matuyama magnetic reversal (2.47 Ma), then concentrations abruptly increased. After 2.47 Ma, carbonate concentrations at Site 711 exhibited the same periodic changes as at Site 709. Although a long wave-length periodicity (260-280 k.y.) occurs at these sites after 2.47 Ma, the 100 k.y. period is absent. The dominant periods observed in these data are those found in the eccentricity component of the earth's orbital geometry. Estimates of carbonate accumulation at Sites 709 and 710 document that surface-water productivity decreased near the Gauss/Matuyama magnetic reversal whereas accumulation at Site 711 increased. These results indicate that the rate of carbonate preservation in the deep Indian Ocean increased at that time. This increase in preservation may have re- sulted from a decrease in the production rate of carbonate in tropical oceans of the world. Carbonate accumulation esti- mated from sediments in shallow locations (~3000-3800 m) of the Atlantic and Pacific oceans also indicates that carbonate production decreased at this time. A consequence of lowered surface-water productivity is increased carbonate ion concentration of the deep ocean and better preservation of carbonate on the seafloor.
Resumo:
Monthly measurements of pH, alkalinity and oxygen over two years (February 1998-February 2000) at the Dyfamed site in the central zone of the Ligurian-Provençal Basin of the Mediterranean made it possible to assess the vertical distributions (5-2000 m) and the seasonal variations of these properties. Alkalinity varies linearly with salinity between surface water and the Levantine Intermediate Water (marked by a maximum of temperature and salinity). In deep water, total alkalinity is also correlated linearly to salinity, but the slope of the regression line is 15% less. In surface water, the pH at 25°C varies between 7.91 and 8.06 on the total proton scale depending upon the season. The lowest values are observed in winter, the highest in spring and in summer. These variations are primarily due to biological production. The pH goes through a minimum around 150-200 m and a small maximum below the intermediate water. The total dissolved inorganic carbon content (deduced from pH and alkalinity) is variable in surface water (2205-2310 ?mol/kg) and has a maximum in intermediate water, which is related to the salinity maximum. Normalized total inorganic carbon at a constant salinity is strongly negatively correlated with pH at 25°C. The fugacity of CO2, (fCO2) varies between 320 and 430 ?atm in surface water, according to the season. Below the seasonal thermocline, the maximum fCO2 (about 410 ?atm) is located around 150-200 m. The presence of a minimum of oxygen in the intermediate water of this area has been observed for several years, but our measurements made it possible to specify the relationship between oxygen and salinity in deep water. Data from the intense vertical mixing during the winters of 1999 and 2000 were used to calculate the oxygen quantity exchanged with the atmosphere during these periods. The estimated quantity of oxygen entering the Mediterranean Sea exceeds that deduced from exchange coefficients calculated with the formula of Wanninkhof and McGillis. During the vertical mixing in the 1999 winter, fCO2 in surface water was on average below equilibrium with atmospheric fCO2, thus implying that CO2 was entering the sea. However, on this time scale, even with high exchange coefficients, the estimated CO2 uptake had no significant influence on the inorganic carbon content in the water column.
Resumo:
River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (delta18O, delta13C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth.
Resumo:
Bulk carbonate content, planktic and benthic foraminiferal assemblages, stable isotope compositions of bulk carbonate and Nuttallides truempyi (benthic foraminifera), and non-carbonate mineralogy were examined across ~30 m of carbonate-rich Paleogene sediment at Deep Sea Drilling Project (DSDP) Site 259, on Perth Abyssal Plain off Western Australia. Carbonate content, mostly reflecting nannofossil abundance, ranges from 3 to 80% and generally exceeds 50% between 35 and 57 mbsf. A clay-rich horizon with a carbonate content of about 37% occurs between 55.17 and 55.37 mbsf. The carbonate-rich interval spans planktic foraminiferal zones P4c to P6b (~57-52 Ma), with the clay-rich horizon near the base of our Zone P5 (upper)-P6b. Throughout the studied interval, benthic species dominate foraminiferal assemblages, with scarce planktic foraminifera usually of poor preservation and limited species diversity. A prominent Benthic Foraminiferal Extinction Event (BFEE) occurs across the clay-rich horizon, with an influx of large Acarinina immediately above. The delta13C records of bulk carbonate and N. truempyi exhibit trends similar to those observed in upper Paleocene-lower Eocene (~57-52 Ma) sediment from other locations. Two successive decreases in bulk carbonate and N. truempyi delta13C of 0.5 and 1.0? characterize the interval at and immediately above the BFEE. Despite major changes in carbonate content, foraminiferal assemblages and carbon isotopes, the mineralogy of the non-carbonate fraction consistently comprises expanding clay, heulandite (zeolite), quartz, feldspar (sodic or calcic), minor mica, and pyrolusite (MnO2). The uniformity of this mineral assemblage suggests that Site 259 received similar non-carbonate sediment before, during and after pelagic carbonate deposition. The carbonate plug at Site 259 probably represents a drop in the CCD from ~57 to 52-51 Ma, as also recognized at other locations.
Resumo:
The evolution of pore fluids migrating through the forearc basins, continental massif, and accretionary prism of the Peru margin is recorded in the sequence of carbonate cements filling intergranular and fracture porosities. Petrographic, mineralogic, and isotopic analyses were obtained from cemented clastic sediments and tectonic breccias recovered during Leg 112 drilling. Microbial decomposition of the organic-rich upwelling facies occurs during early marine diagenesis, initially by sulfate-reduction mechanisms in the shallow subsurface, succeeded by carbonate reduction at depth. Microcrystalline, authigenic cements formed in the sulfate-reduction zone are 13C-depleted (to -20.1 per mil PDB), and those formed in the carbonate-reduction zone are 13C-enriched (to +19.0 per mil PDB). Calcium-rich dolomites and near-stoichiometric dolomites having uniformly heavy d18O values (+2.7 to +6.6 per mil PDB) are typical organic decomposition products. Quaternary marine dolomites from continental-shelf environments exhibit the strongest sulfate-reduction signatures, suggesting that Pleistocene sea-level fluctuations created a more oxygenated water column, caused periodic winnowing of the sediment floor, and expanded the subsurface penetration of marine sulfate. We have tentatively identified four exotic cement types precipitated from advected fluids and derived from the following diagenetic environments: (1) meteoric recharge, (2) basalt alteration, (3) seafloor venting and (4) hypersaline concentration. Coarsely crystalline, low-magnesium (Lo-Mg) calcite cements having pendant and blocky-spar morphologies, extremely negative d18O values (to -7.5 per mil PDB), and intermediate d13C values (-0.4 per mil to +4.6 per mil PDB) are found in shallow-marine Eocene strata. These cements are evidently products of meteoric diagenesis following subaerial emergence during late Eocene orogenic movements, although the strata have since subsided to greater than 4,000 m below sea level. Lo-Mg calcite cements filling scaly fabrics in the late Miocene accretionary prism sediments are apparently derived from fluids having lowered magnesium/calcium (Mg/Ca) and 18O/16O ratios; such fluids may have reacted with the subducting oceanic crust and ascended through the forearc along shallow-dipping thrust faults. Micritic, high-magnesium (Hi-Mg) calcite cements having extremely depleted d13C values (to -37.3%c PDB), and a benthic fauna of giant clams (Calyptogena sp.) supported by a symbiotic, chemoautotrophic metabolism, provide evidence for venting of methane-charged waters at the seafloor. Enriched d18O values (to +6.6%c PDB) in micritic dolomites from the continental shelf may be derived from hypersaline fluids that were concentrated in restricted lagoons behind an outer-shelf basement ridge, reactivated during late Miocene orogenesis.