384 resultados para zeolites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Bronsted acidity of titanium silicalite zeolite (with different ratios of Si/Ti) in oxidation reactions of styrene has been investigated and discussed. For zeolites with Si/Ti > 42, most of the titanium is in the zeolite framework. These framework titanium species, which act both as the isolated titanium centers and as Bronsted acidity centers (together with the Bronsted acidity produced by the tetrahedral aluminum impurity introduced during synthesis), can catalyze both the epoxidation and the succeeding rearrangement reactions, thus promoting the formation of phenylacetaldehyde. With an increase in the titanium content of the zeolite, titanium will tend to stay outside the zeolite lattice, except for the TiOx nanophases which can be occluded in the zeolite channels or on the external surface. These non-framework titanium species are favorable for the carbon-carbon bond scission, leading to the production of additional benzaldehyde. The catalytic performances of these zeolites with different Si/Ti ratios are correlated here with their structural information by using solid-state NMR and UV-Vis methods. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using microporous zeolites as host, sub-nanometric ZnO clusters were prepared in the micropores of the host by the incipient wetness impregnation method. A small amount of sub-nanometric ZnO clusters were introduced into the channels of HZSM-5 zeolite, whereas a large quantity of sub-nanometric ZnO clusters can be accommodated in the supercages of HY zeolite and no macrocrystalline ZnO exists on the extra surface of the HY material. The vibrations of the zeolite framework and ZnO were characterized by UV Raman spectroscopy. The optical properties of these ZnO clusters were studied by UV-visible absorption spectroscopy and laser-induced luminescence spectroscopy. It is found that there are strong host-guest interactions between the framework oxygen atoms of zeolite and ZnO clusters influencing the motions of the framework oxygen atoms. The interaction may be the reason why ZnO clusters are stabilized in the pores of zeolites. Different from bulk ZnO materials, these sub-nanometric ZnO clusters exhibit their absorption onset below 265 nm and show a purple luminescence band (centered at 410-445 nm) that possesses high quantum efficiency and quantum size effect. This purple luminescence band most likely originates from the coordinatively unsaturated Zn sites in sub-nanometric ZnO clusters. On the other hand, the differences in the pore structure between HZSM-5 and HY zeolites cause the absorption edge and the purple luminescence band of ZnO clusters in ZnO/HZSM-5 show a red shift in comparison with those of ZnO clusters in ZnO/HY.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For recycling of waste polymers, the degradation behavior of PP was studied with a combination of radiolysis and thermolysis methods. The results revealed that thermal degradation temperature of PP was significantly reduced when PP was irradiated in the presence of a zeolite. The irradiation-induced temperature reduction depended on the zeolite structure and composition, as well as on the morphology of the mixture. Identification of pyrolysis products indicated that, in the absence of zeolite, irradiation resulted only in a change of the product distribution but no formation of new compounds. In the presence of zeolite, however, a series of oxidized products were formed. In addition, the pyrolysis could be performed at a much lower temperature. (C) 1996 Elsevier Science Limited

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the intention of understanding chemical recycling of waste polymers, various kinds of zeolites were used as catalysts in the pyrolysis of polypropylene (PP). The effects of zeolites on the degradation temperature and pyrolyzed products of PP were studied. It was found that the degradation temperature of PP strongly depended on the type of zeolite used and the amount added. One type of HY zeolite (320HOA) was shown to be a very effective catalyst. Pyrolysis products, which were identified by using a coupled gas-chromatograph-mass-spectrometer, were also affected by the addition of zeolites. Some zeolites did not change the structure of the products but narrowed the product distribution to a smaller molecule region, while the HY zeolite led to hydrocarbons concentrated at those containing 4-9 carbons. Furthermore, some new compounds with cyclic structures were found in the presence of the HY zeolite. (C) 1996 Elsevier Science Limited

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic behavior of Mo-based zeolite catalysts with different pore structure and size, particularly with 8 membered ring ( M R), 10 M R, coexisted 10 and 12 M R, and 12 M R, was studied in methane aromatization under the conditions of SV=1500 ml/(g.h), p=0.1 MPa and T = 973 K. It was found that the catalytic performance is correlated with the pore structure of the zeolite supports. The zeolites that possess 10 MR or 10 and 12 MR pore structure with a pore diameter equal to or slightly larger than the dynamic diameter of benzene molecule, such as ZSM-5, ZSM-11, ZRP-1 and MCM-22, are fine supports. Among the tested zeolite supports, MCM-22 exhibits the highest activity and selectivity for benzene. A methane conversion of 10.5% with benzene selectivity of 80% was achieved over Mo/MCM-22 catalyst. The Mo/ERS-7 catalyst with 8 MR (0.45 nm) does not show any activity in methane dehydro-aromatization, while Mo/JQX-1 and Mo/SBA-15 catalysts with 12 MR pore exhibit little activity in the reaction. It can be concluded that the zeolites with 10 MR pore or coexisted 10 and 12 MR, having pore size equal to or slightly larger than the dynamic diameter of benzene molecule, are fine supports for methane activation and aromatization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal treatment on H-MCM-22 and H-ZSM-5 zeolites was investigated using the electron spin resonance technique. A six-line signal (denoted as A, g = 2.048, A = 22. 15 G) was detected on H-MCM-22 after He purging at high temperatures, whose intensities increased with the treating temperature. The same signal was also found on H-ZSM-5 zeolites with different crystal sizes. The paramagnetic center was identified as a V center, namely, a hole of an electron trapped on an oxygen atom bonding to a nearby aluminum atom. These signals appeared only on a dealuminated sample or a sample concomitantly with dealumination. The formation of the hole might involve an electron transferring from the lattice oxygen to a nonframework aluminum species, and the hyperfine splitting is caused by the interaction between the electron hole locating on the p orbit of oxygen and the framework aluminum bonding with the oxygen. The signal disappeared after the sample was exposed to air or oxygen at room temperature. However, the process was reversible. A new set of signals (denoted as B, g(1) = 2.008, g(2) = 2.003, g(3) = 1.9985) was observed after oxygen adsorption on the H-MCM-22 pretreated with He at 973 K or He purging at 973 K on the H-MCM-22 pretreated with oxygen at 813 K, which was attributed to the O- species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of surface alkoxy species on nanosized HZSM-5 and microsized HZSM-5, after exposure to methanol and subsequent conversion to olefins, has been investigated by in situ solid state NMR. Compared to microsized HZSM-5 zeolite, the nanosized HZSM-5 zeolite was found to exhibit a higher affinity for trapping methanol species. Activation of the adsorbed methanol species resulted in the formation of various surface alkoxy species with different rigid characters, including the carboxylate-like surface species, as evidenced by deconvolution of the related spectra. The present results support the existence of the so-called carbon-pool in the conversion of methanol, which serves as the reaction precursor not only for the coupling of the species to form olefins, but also for uncontrolled polymerization to give coke on the surface. The nanosized HZSM-5 shows a distinct resistance to the formation of carbonaceous deposits on the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variations in structure and acidity on the internal and external surfaces of HY zeolites modified by MgO and SiO2 have been studied by MAS NMR, together with the selective adsorption of perfluorotributyl-amine. Al-27 and Si-29 MAS NMR spectra revealed that the modifications led to significant changes of the framework owing to the migration of some non-framework Si and Al into the framework in the course of the modifications. H-1 MAS NMR spectra showed that the modifications decreased the acidity of the zeolite surfaces. With an increasing of the loading of the oxides, the acidity of the surface decreased further. Both of the two kinds of Bronsted acidity of the MgO-modified HY zeolites decreased, particularly those in the supercages, while those of the SiO2-modified HY zeolites decreased less, and this result is consistent with that of NH3-TPD, from the adsorption of perfluorotributyl-amine, it was found that the acidic sites on the external surface of the HY zeolite can be completely covered by SiO2 after being modified by the chemical liquid deposition (CLD) method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicalite-I, ZSM-5, and Fe-ZSM-5 zeolites prepared from two different silicon sources are characterized by UV resonance Raman (UVRR) spectroscopy, X-ray diffraction (XRD), electron spin resonance (ESR), and UV/visible diffuse reflectance spectroscopy (UV/Vis DRS). A new technique for investigating zeolitic structure, UV resonance Raman spectroscopy selectively enhances the Raman bands associated with framework iron atoms incorporated into MFI-type zeolites, and it is very sensitive in identifying the iron atoms in the framework of zeolites, while other techniques such as XRD, ESR, and UV/Vis DRS have failed in uncovering trace amounts of iron atoms in the framework of zeolites. (C) 2000 Academic Press.