994 resultados para wood formation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem diameter in Gallesia integrifolia (Spreng.) Harms (Phytolaccaceae) increases by forming concentric rings of xylem alternating with phloem, which show frequent anastomoses. After a period of primary growth and the formation of first (normal) ring of vascular cambium, further successive rings are initiated outside this cambium. The second ring of cambium originates from the pericycle parenchyma located between the proto-phloem, and the pericycle fibres. Each cambium produces centripetally secondary xylem and centrifugally secondary phloem. Differentiation of xylem precedes that of phloem and the first elements formed are always xylem fibres. Structurally, the vascular cylinder is composed by successive rings of secondary xylem and phloem. These rings are separated by wide bands of conjunctive parenchyma tissue. Presence of collateral vascular bundles with irregular orientation is observed in the region of anastomoses of two or more bands of conjunctive tissue. These bundles are surrounded by isodiametric, lignified and thick-walled cells. In some of the cambial rings, occurrence of polycentric rays was also noticed; these rays are tall, and characterized by the presence of meristematic regions that differentiated into thick-walled elements of secondary xylem. Origin and development of the successive cambia and the structure of xylem are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The common point between the two forms of production of the wood-based sector in Brazil, one practically manufacturing and the other high technology, is in the qualification of the of the labor. In both cases, the professionals are being formed directly in the productive line and rarely with qualification in the academic area. There is not a public political education for the qualification of the labor, and the work market that does not demand qualified professionals, contributes for the sector stagnation. So, in order to excel the socio-cultural barriers in relation to the use of wood in the buildings, new attitudes are necessary in the teaching of the contents of the curricular programs, mainly, in formation of the architect and civil engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood plastic composites (WPCs) have gained popularity as building materials because of their usefulness in replacing solid wood in a variety of applications. These composites are promoted as being low-maintenance, high-durability products. However, it has been shown that WPCs exposed to weathering may experience a color change and/or loss in mechanical properties. An important requirement for building materials used in outdoor applications is the retention of their aesthetic qualities and mechanical properties during service life. Therefore, it is critical to understand the photodegradation mechanisms of WPCs exposed to UV radiation and to develop approaches to stabilize these composites (both unstabilized and stabilized) as well as the effect of weathering on the color fade and the retention of mechanical properties were characterized. Since different methods of manufacturing WPCs lead to different surface characteristics, which can influence weathering, the effect of manufacturing method on the photodegradation of WPCs was investigated first. Wood flour (WF) filled high-density polyethylene (HDPE) composite samples were either injection molded, extruded, or extruded and then planed. Fourier transform infrared (FTIR) spectroscopy was used to monitor the surface chemistry of the manufactured composites. The spectra showed that the surface of planed samples had more wood component than extruded and injection molded samples, respectively. After weathering, the samples were analyzed for color fade, and loss of flexural properties. The final lightness of the composites was not dependent upon the manufacturing method. However the mechanical property loss was dependent upon manufacturing method. The samples with more wood component at the surface (planed samples) experienced a larger percentage of total loss in flexural properties after weathering due to a greater effect of moisture on the samples. The change in surface chemistry of HDPE and WF/HDPE composites after weathering was studied using spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) was used to characterize the occurrence of surface oxidation whereas FTIR spectroscopy was used to monitor the development of degradation products, such as carbonyl groups and vinyl groups, and to determine changes in HDPE crystallinity. Surface oxidation occurred immediately after exposure for both the neat HDPE and WF/HDPE composites. After weathering, the surface of the WF/HDPE composites was oxidized to a greater extent than the neat HDPE after weathering. This suggests that photodegradation is exacerbated by the addition of the carbonyl functional groups of the wood fibers within the HDPE atrix during composite manufacturing. While neat HDPE may undergo cross-linking in the initial stages of accelerated weathering, the WF may physically hinder the ability of the HDPE to cross-link resulting in the potential for HDPE chain scission to dominate in the initial weathering stages of the WF/HDPE composites. To determine which photostabilizers are most effective for WF/HDPE composites, factorial experimental designes were used to determine the effects of adding two hindered amine light stabilizers, an ultraviolet absorber, and a pigment on the color made and mechanical properties of both unweathered and UV weathered samples. Both the pigment and ultraviolet absorber were more effective photostabilizers for WF/HDPE composites than hinder amine light stabilizers. The ineffectiveness of hindered amine light stabilizers in protecting WPCs against UV radiation was attribuated to the acid/base reactions occurring between the WF and hindered amine light stabilizer. The efficiency of an ultraviolet absorber and/or pigment was also examined by incorporating different concentration of an ultraviolet absorber and/or pigment into WF/HDPE composites. Color change and flexural properties were determined after accelerated UV weathering. The lightness of the composite after weathering was influenced by the concentration of both the ultraviolet absorber by masking the bleaching wood component as well as blocking UV light. Flexural MOE loss was influenced by an increase in ultraviolet absorber concentration, but increasing pigment concentration from 1 to 2% had little influence on MOE loss. However, increasing both ultraviolet absorber and pigment concentration resulted in improved strength properties over the unstabilized composites after 3000 h of weather. Finally, the change in surface chemistry due to weathering of WF/HDPE composites that were either unstabilized or stabilized with an ultraviolet absorber and/or pigment was analyzed using FTIR spectroscopy. The samples were tested for loss in modulus of elasticity, carbonyl and vinyl group formation at the surface, and change in HDPE crystallinity. It was concluded that structural changes in the samples; carbonyl group formation, terminal vinyl group formation, and crystallinity changes cannot reliably be used to predict changes in modulus of elasticity using a simple linear relationship. The effect of cross-linking, chain scission, and crystallinity changes due to ultraviolet exposure as well as the interfacial degradation due to moisture exposure are inter-related factors when weathering HDPE and WF/HDPE composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plane table and pacing methods were used in the mapping of the individual areas, but an automobile traverse was used to tie the independent areas into a composite group that would be useful for the entire zone. All land marks, section corners, roads, fence lines, drainage, and geologic features were plotted in the field and later transferred to a master map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall objective of this thesis was to gain further understanding of the non-enzymatic mechanisms involved in brown-rot wood decay, especially the role of pH, oxalic acid, and low molecular catecholate compounds on the dissolution and reduction of iron, and the formation of reactive oxygen species. Another focus of this study will be the potential application of a biomimetic free radical generating system inspired from fungi wood decay process, especially the non-enzymatic mechanism. The possible pathways of iron uptake and iron redox cycling in non-enzymatic brown-rot decay were investigated in this study. UV-Vis spectroscopy and HPLC were employed to study the kinetics and pathways of the interaction between iron and model catecholate compounds under different pH and chelator/iron molar ratio conditions. Iron chelation and reduction during early non-enzymatic wood decay processes have been studied in this thesis. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on the hydroxyl radical generation in a Fenton type system can be determined using ESR spin-trapping techniques. Data also support the hypothesis that superoxide radicals are involved in chelator-mediated Fenton processes. The mechanisms involved in free radical activation of Thermal Mechanical Pulp fibers were investigated. The activation of TMP fibers was evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. A mediated Fenton system was evaluated for decolorization of several types of dyes. The result shows that the Fenton system mediated by a catecholate-type chelator effectively reduced the color of a diluted solution of synthetic dyes after 90 minutes of treatment at room temperature. The results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical species to increase the decolorization efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The terrestrial biogeography of Gondwana during Jurassic-Early Cretaceous times is poorly resolved, and the flora is usually considered to have been rather uniform. This is surprising given the size of Gondwana, which extended from the equator to the South Pole. Documenting Gondwanan terrestrial floristic provincialism in the Jurassic-Early Cretaceous times is important because it provides a historical biogeographic context in which to understand the tremendous evolutionary radiations that occurred during the mid-Cretaceous. In this paper, the distribution of Jurassic-Early Cretaceous fossil wood is analysed at generic level across the entire supercontinent. Specifically, wood assemblages are analyzed in terms of five climatic zones (summer wet, desert, winter wet, warm temperate, cool temperate) established on the basis of independent data. Results demonstrate that araucarian-like conifer wood was a dominant, cosmopolitan element, whereas other taxa showed a greater degree of provincialism. Indeed, several narrowly endemic morphogenera are recognizable from the data. Finally, comparisons with Laurasian wood assemblages indicate strong parallelism between the vegetation of both hemispheres. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When cultures of Brachyspira hyodysenteriae were grown under a wide range of in vitro conditions, at least 1% of the cells formed spherical bodies different to the normal helical form. This percentage increased considerably in aging cultures or following their incubation in caramelized media. Spherical body formation was initiated from a terminal localized swelling of the outer sheath followed by a retraction of the protoplasmic cylinder into the resulting swollen vesicle. As this occurred, the periplasmic flagella seemed to unwind from the protoplasmic cylinder. Once retracted, the protoplasmic cylinder was found to be wrapped in an organized manner around the inner surface of the membrane of the swollen vesicle. Although most were 2-3 mu m in diameter, some much larger spherical bodies (6-12 mu m diameter) were occasionally seen, with a corresponding increase in the visible number of peripheral protoplasmic cylinder cross-sections. Spherical bodies from older cultures did not contain protoplasmic cylinders arranged around the periphery, but instead were characterized by the presence of a centrally located, electron-dense body c. 0.5-0.8 mu m in diameter. Brachyspira hyodysenteriae spherical bodies differ in both their structural organization and probable method of formation from similar structures described in other spirochaete genera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Driven by the global trend in the sustainable economy development and environmental concerns, the exploring of plant-derived biomaterials or biocomposites for potential biomedical and/or pharmaceutical applications has received tremendous attention. Therefore, the work of this thesis is dedicated to high-value and high-efficiency utilization of plant-derived materials, with the focus on cellulose and hemicelluloses in the field of biomedical applications in a novel biorefinery concept. The residual cellulose of wood processing waste, sawdust, was converted into cellulose nanofibrils (CNFs) with tunable surface charge density and geometric size through 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-mediated oxidation and mechanical defibrillation. The sawdust-based CNFs and its resultant free-standing films showed comparable or even better mechanical properties than those from a commercial bleached kraft pulp at the same condition, demonstrating the feasibility of producing CNFs and films thereof with outstanding mechanical properties from birch sawdust by a process incorporated into a novel biorefinery platform recovering also polymeric hemicelluloses for other applications. Thus, it is providing an efficient route to upgrade sawdust waste to valuable products. The surface charge density and geometric size of the CNFs were found to play key roles in the stability of the CNF suspension, as well as the gelling properties, swelling behavior, mechanical stiffness, morphology and microscopic structural properties, and biocompatibility of CNF-based materials (i.e. films, hydrogels, and aerogels). The CNFs with tunable surface chemistry and geometric size was found promising applications as transparent and tough barrier materials or as reinforcing additive for production of biocomposites. The CNFs was also applied as structural matrices for the preparation of biocomposites possessing electrical conductivity and antimicrobial activity by in situ polymerization and coating of polypyrrole, and incorporation of silver nanoparticles, which make the material possible for potential wound healing application. The CNF-based matrices (films, hydrogels, and aerogels) with tunable structural and mechanical properties and biocompatibility were further prepared towards an application as 3D scaffolds in tissue engineering. The structural and mechanical strength of the CNF matrices could be tuned by controlling the charge density of the nanocellulose, as well as the pH and temperature values of the hydrogel formation conditions. Biological tests revealed that the CNF scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells, suggesting the usefulness of the CNF-based 3D matrices in supporting crucial cellular processes during cell growth and proliferation. The CNFs was applied as host materials to incorporate biomolecules for further biomedical application. For example, to investigate how the biocompatibility of a scaffold is influenced by its mechanical and structural properties, these properties of CNF-based composite matrices were controlled by incorporation of different hemicelluloses (O-acetyl galactoglucomanan (GGM), xyloglucan (XG), and xylan) into CNF hydrogel networks in different ratios and using two different approaches. The charge density of the CNFs, the incorporated hemicellulose type and amount, and the swelling time of the hydrogels were found to affect the pore structure, the mechanical strength, and thus the cells growth in the composite hydrogel scaffolds. The mechanical properties of the composite hydrogels were found to have an influence on the cell viability during the wound healing relevant 3T3 fibroblast cell culture. The thusprepared CNF composite hydrogels may work as promising scaffolds in wound healing application to provide supporting networks and to promote cells adhesion, growth, and proliferation.

Relevância:

20.00% 20.00%

Publicador: