923 resultados para white matter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blood-brain barrier (BBB) hyperpermeability in multiple sclerosis (MS) is associated with lesion pathogenesis and has been linked to pathology in microvascular tight junctions (TJs). This study quantifies the uneven distribution of TJ pathology and its association with BBB leakage. Frozen sections from plaque and normal-appearing white matter (NAWM) in 14 cases were studied together with white matter from six neurological and five normal controls. Using single and double immunofluorescence and confocal microscopy, the TJ-associated protein zonula occludens-1 (ZO-1) was examined across lesion types and tissue categories, and in relation to fibrinogen leakage. Confocal image data sets were analysed for 2198 MS and 1062 control vessels. Significant differences in the incidence of TJ abnormalities were detected between the different lesion types in MS and between MS and control white matter. These were frequent in oil-red O (ORO)+ active plaques, affecting 42% of vessel segments, but less frequent in ORO- inactive plaques (23%), NAWM (13%), and normal (3.7%) and neurological controls (8%). A similar pattern was found irrespective of the vessel size, supporting a causal role for diffusible inflammatory mediators. In both NAWM and inactive lesions, dual labelling showed that vessels with the most TJ abnormality also showed most fibrinogen leakage. This was even more pronounced in active lesions, where 41% of vessels in the highest grade for TJ alteration showed severe leakage. It is concluded that disruption of TJs in MS, affecting both paracellular and transcellular paths, contributes to BBB leakage. TJ abnormality and BBB leakage in inactive lesions suggests either failure of TJ repair or a continuing pathological process. In NAWM, it suggests either pre-lesional change or secondary damage. Clinically inapparent TJ pathology has prognostic implications and should be considered when planning disease-modifying therapy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blood-brain barrier (BBB) breakdown, demonstrable in vivo by enhanced MRI is characteristic of new and expanding inflammatory lesions in relapsing remitting and chronic progressive multiple sclerosis (MS). Subtle leakage may also occur in primary progressive MS. However, the anatomical route(s) of BBB leakage have not been demonstrated. We investigated the possible involvement of interendothelial tight junctions (TJ) by examining the expression of TJ proteins (occludin and ZO-1 ) in blood vessels in active MS lesions from 8 cases of MS and in normal-appearing white (NAWM) matter from 6 cases. Blood vessels (10-50 per frozen section) were scanned using confocal laser scanning microscopy to acquire datasets for analysis. TJ abnormalities manifested as beading, interruption, absence or diffuse cytoplasmic localization of fluorescence, or separation of junctions (putative opening) were frequent (affecting 40% of vessels) in oil red-O-positive active plaques but less frequent in NAWM (15%), and in normal (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue microarrays assembled from control and multiple sclerosis (MS) brain tissue have been used to assess the expression patterns and cellular distribution of two antigens, the proinflammatory cytokine osteopontin and the inducible heat shock protein alpha B -crystallin, which have previously been implicated in MS pathogenesis. Tissue cores were taken from paraffin-embedded donor blocks containing chronic active or chronic inactive plaques and normal-appearing white matter (NAWM) in seven MS cases, and white matter (WM) in five control cases. Expression patterns of both proteins were assessed against myelin density and microglial activation in the different tissue categories. Both proteins showed increased expression in all categories of MS tissue compared with control WM. The results indicate progressive up-regulation of expression of osteopontin with increased plaque activity, while elevation of alpha B-crystallin expression in MS tissue was independent of demyelination. In MS NAWM a significant correlation was observed between high levels of expression of osteopontin and alpha B -crystallin. Osteopontin expression was predominantly confined to astrocytes throughout MS tissues. alpha B -crystallin was expressed on astrocytes, oligodendrocytes and occasionally on demyelinated axons. Taken together, these data indicate a wider distribution of osteopontin and alpha B -crystallin in MS tissues than previously described and support their proposed role in MS pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaporin-4 (AQP4) has recently been implicated in the pathogenesis of neuromyelitis optica(NMO) where it has been identifed as the first defined autoantigen pertinent to an infammatory demyelinating disorder of the human CNS. Furthermore, a recent case report has shown a lack of AQP4 expression in the spinal cord lesions of NMO. However, the pattern of AQP4 expression in multiple sclerosis (MS) tissues has not been well-defned. In the present investigation we have confirmed a lack of expression of AQP4 in optic and spinal cord lesions in NMO which contrasted sharply with the increased levels of AQP4 expression seen in MS lesions. Furthermore a detailed immunohistochemical and semi-quantitative analysis is used to describe the expression pattern of AQP4 on well-characterized tissue microarray samples of MS and control white matter. Anatomically AQP4 was more highly expressed in all categories of MS tissue compared to normal control tissues with the most abundant expression in active lesions. Within active lesions AQP4 expression was significantly correlated with expression of the pro-infammatory cytokine osteopontin. At the cellular level dual-labelling immunofluoresence demonstrated that increased expression of AQP4 was most pronounced at the astrocytic endfeet but was also associated with the cell bodies of astrocytes in the tissue parenchyma. The finding of increased AQP4 expression in MS lesions in contrast to the lack of expression in NMO lesions may suggest different mechanisms of initiation and progression between the two disease states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White matter tractsc onnecting areas involved in speech and motor control were examined using diffusion-tensor imagingingin a sample of peoplewhostutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend ourknowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotorcortex, cerebral peduncles and posteriorcorpus callosum in people who stutter, relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within theleft corticobulbar tract in people who stutter. Region-of-interest analyses revealed reduced white matter integrity in people whostutter in the three pairs ocerebellar peduncles thatcarry the afferent and efferent fibers of the cerebellum. Within thegroup of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the leftangular gyrus but the greater the white matter connectivity in theleft corticobulbartract. Also,in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural basis of stuttering and which reflect experience-dependent plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies suggest that learning and using a second language (L2) can affect brain structure, including the structure of white matter (WM) tracts. This observation comes from research looking at early and older bilingual individuals who have been using both their first and second languages on an everyday basis for many years. This study investigated whether young, highly immersed late bilinguals would also show structural effects in the WM that can be attributed to everyday L2 use, irrespective of critical periods or the length of L2 learning. Our Tract-Based Spatial Statistics analysis revealed higher fractional anisotropy values for bilinguals vs. monolinguals in several WM tracts that have been linked to language processing and in a pattern closely resembling the results reported for older and early bilinguals. We propose that learning and actively using an L2 after childhood can have rapid dynamic effects on WM structure, which in turn may assist in preserving WM integrity in older age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, the authors aim to present a critical review of recent MRI studies addressing white matter (WM) abnormalities in Alzheimer's disease (AD) and mild cognitive impairment (MCI), by searching PubMed and reviewing MRI studies evaluating subjects with AD or MCI using WM volumetric methods, diffusion tensor imaging and assessment of WM hyperintensities. Studies have found that, compared with healthy controls, AD and MCI samples display WM volumetric reductions and diffusion tensor imaging findings suggestive of reduced WM integrity. These changes affect complex networks relevant to episodic memory and other cognitive processes, including fiber connections that directly link medial temporal structures and the corpus callosum. Abnormalities in cortico-cortical and cortico-subcortical WM interconnections are associated with an increased risk of progression from MCI to dementia. It can be concluded that WM abnormalities are detectable in early stages of AD and MCI. Degeneration of WM networks causes disconnection among neural cells and the degree of such changes is related to cognitive decline. © 2013 2013 Expert Reviews Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of white matter (WM) abnormalities in psychotic disorders has been suggested by several studies investigating brain pathology and diffusion tensor measures, but evidence assessing regional WM morphometry is still scarce and conflicting. In the present study, 122 individuals with first-episode psychosis (FEP) (62 fulfilling criteria for schizophrenia/schizophreniform disorder, 26 psychotic bipolar I disorder, and 20 psychotic major depressive disorder) underwent magnetic resonance imaging, as well as 94 epidemiologically recruited controls. Images were processed with the Statistical Parametric Mapping (SPM2) package, and voxel-based morphometry was used to compare groups (t-test) and subgroups (ANOVA). Initially, no regional WM abnormalities were observed when both groups (overall FEP group versus controls) and subgroups (i.e., schizophrenia/schizophreniform, psychotic bipolar I disorder, psychotic depression, and controls) were compared. However, when the voxelwise analyses were repeated excluding subjects with comorbid substance abuse or dependence, the resulting statistical maps revealed a focal volumetric reduction in right frontal WM, corresponding to the right middle frontal gyral WM/third subcomponent of the superior longitudinal fasciculus, in subjects with schizophrenia/schizophreniform disorder (n = 40) relative to controls (n = 89). Our results suggest that schizophrenia/schizophreniform disorder is associated with right frontal WM volume decrease at an early course of the illness. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: schizophrenia's endophenotipic profile is not only generally complex, but often varies from case to case. The perspective of trying to define specific anatomic correlates of the syndrome has led to disappointing results. In that context, neurophysiologic hypotheses (e. g. glutamatergic hypothesis) and connectivity hypotheses became prominent. Nevertheless, despite their commitment to the principle of denying 'localist' views and approaching the syndrome's endophenotype from a whole brain perspective, efforts to integrate both have not flourished at this moment in time. Objectives: This paper aims to introduce a new etiological model that integrates the glutamatergic and the WM (WM) hypotheses of schizophrenia's etiology. This model proposes to serve as a framework in order to relate to patterns of brain abnormalities from the onset of the syndrome to stages of advanced chronification. Highlights: Neurotransmitter abnormalities forego noticeable WM abnormalities. The former, chiefly represented by NMDAR hypo-function and associated molecular cascades, is related to the first signs of cell loss. This process is both directly and indirectly integrated to the underpinning of WM structural abnormalities; not only is the excess of glutamate toxic to the WM, but its disruption is associated to the expression of known genetic risk factors (e. g., NRG-1). A second level of the model develops the idea that abnormal neurotransmission within specific neural populations ('motifs') impair particular cognitive abilities, while subsequent WM structural abnormalities impair the integration of brain functions and multimodality. As a result of this two-stage dynamic, the affected individual progresses from experiencing specific cognitive and psychological deficits, to a condition of cognitive and existential fragmentation, linked to hardly reversible decreases in psychosocial functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrocephalus is associated with reduced blood flow in periventricular white matter. To investigate hypoxic and oxidative damage in the brains of rats with hydrocephalus, kaolin was injected into the cisterna magna of newborn 7- and 21-day-old Sprague-Dawley rats, and ventricle size was assessed by magnetic resonance imaging at 7, 21, and 42 days of age. In-situ evidence of hypoxia in periventricular capillaries and glial cells was shown by pimonidazole hydrochloride binding. Biochemical assay of thiobarbituric acid reaction and immunohistochemical detection of malondialdehyde and 4-hydroxy-2-nonenal indicated the presence of lipid peroxidation in white matter. Biochemical assay of nitrite indicated increased nitric oxide production. Nitrotyrosine immunohistochemistry showed nitrosylated proteins in white matter reactive microglia and astrocytes. Activities of the antioxidant enzymes catalase and glutathione peroxidase were not increased, and altered hypoxia-inducible factor 1 alpha was not detected by quantitative reverse transcription-polymerase chain reaction. Cerebral vascular endothelial growth factor expression determined by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay was not changed, but vascular endothelial growth factor immunoreactivity was increased in reactive astrocytes of hydrocephalic white matter. To determine if nitric oxide synthase is involved in the pathogenesis, we induced hydrocephalus in 7-day-old wild-type and neuronal nitric oxide synthase-deficient mice. At 7 days, the wild-type and mutant mice exhibited equally severe ventriculomegaly and no behavioral differences, although increased glial fibrillary acidic protein was less in the mutant mice. We conclude that hypoxia, via peroxidation and nitrosylation, contributes to brain changes in young rodents with hydrocephalus and that compensatory mechanisms are negligible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il cervello umano è composto da una rete complessa, formata da fasci di assoni, che connettono le diverse aree cerebrali. Il fascio arcuato collega l’area imputata alla com- prensione del linguaggio con quella dedicata alla sua produzione. Il fascio arcuato è presente in entrambi gli emisferi cerebrali, anche se spesso è utilizzato prevalente- mente il sinistro. In questa tesi sono state valutate, in un campione di soggetti sani, le differenze tra fascio arcuato destro e sinistro, utilizzando la trattografia, metodica avanzata e non invasiva che permette la ricostruzione della traiettoria delle fibre con immagini RM (Risonanza Magnetica) pesate in diffusione. A questo scopo ho utilizzato un algoritmo probabilistico, che permette la stima di probabilità di connessione della fibra in oggetto con le diverse aree cerebrali, anche nelle sedi di incrocio con fibre di fasci diversi. Grazie all’implementazione di questo metodo, è stato possibile ottenere una ricostruzione accurata del fascio arcuato, an- che nell’emisfero destro dove è spesso critica, tanto da non essere possibile con altri algoritmi trattografici. Parametrizzando poi la geometria del tratto ho diviso il fascio arcuato in venti seg- menti e ho confrontato i parametri delle misure di diffusione, valutate nell’emisfero destro e sinistro. Da queste analisi emerge un’ampia variabilità nella geometria dell’arcuato, sia tra diversi soggetti che diversi emisferi. Nell’emisfero destro l’arcuato incrocia maggiormente fibre appartenenti ad altri fasci. Nell’emisfero sinistro le fibre dell’arcuato sono più compatte e si misura anche una maggiore connettività con altre aree del cervello coinvolte nelle funzioni linguistiche. Nella seconda fase dello studio ho applicato la stessa metodica in due pazienti con lesioni cerebrali, con l’obiettivo di testare il danno del fascio arcuato ipsilaterale alla lesione e stimare se nell’emisfero controlaterale si innescassero meccanismi di plastic- ità strutturale. Questa metodica può essere implementata, in un gruppo di pazienti omogenei, per identificare marcatori RM diagnostici nella fase di pianificazione pre- chirurgica e marcatori RM prognostici di recupero funzionale del linguaggio.