919 resultados para wheel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays Solar Cooling systems are becoming popular to reduce the carbon footprint of air conditioning. The use of an absorption chiller connected to solar thermal panels is increasing, but little study has been carried out to assess the advantage of join together an absorption chiller and a desiccant wheel to remove the sensible heat and the latent heat in different ways than the current design adopted in the industry. In this work I assess the possibility of implement a desiccant wheel in a conventional solar cooling system and the possibility of recovering the heat rejected by the absorption chiller which is then used for the regeneration of the desiccant wheel. The implementation of a desiccant wheel and the recovery of the heat rejected could provide a significant energy saving when compared to traditional solar cooling system. The results assist in the practical development of a solar cooling system which simultaneously uses absorption and adsorption technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rail joints are provided with a gap to account for thermal movement and to maintain electrical insulation for the control of signals and/or broken rail detection circuits. The gap in the rail joint is regarded as a source of significant problems for the rail industry since it leads to a very short rail service life compared with other track components due to the various, and difficult to predict, failure modes – thus increasing the risk for train operations. Many attempts to improve the life of rail joints have led to a large number of patents around the world; notable attempts include strengthening through larger-sized joint bars, an increased number of bolts and the use of high yield materials. Unfortunately, no design to date has shown the ability to prolong the life of the rail joints to values close to those for continuously welded rail (CWR). This paper reports the results of a fundamental study that has revealed that the wheel contact at the free edge of the railhead is a major problem since it generates a singularity in the contact pressure and railhead stresses. A design was therefore developed using an optimisation framework that prevents wheel contact at the railhead edge. Finite element modelling of the design has shown that the contact pressure and railhead stress singularities are eliminated, thus increasing the potential to work as effectively as a CWR that does not have a geometric gap. An experimental validation of the finite element results is presented through an innovative non-contact measurement of strains. Some practical issues related to grinding rails to the optimal design are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheelchair is required for the mobility of the disabled people. It can be categorized into two categories: manual, powered wheelchair. This paper deals with series hybrid combination of manual and battery powered wheelchair. The control scheme used is simpler than other hybrid wheelchairs. It includes the sensor less control of the speed. Battery assisted wheelchair (BAW) has less number of components in its hardware. Effort made by rider is reduced considerably. The control scheme also includes the dead man's switch feature. Speed loop is provided for the smooth variation of the speed. The current limit is governed by peak current mode control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic plastic deformation of subgrade and other engineered layers is generally not taken into account in the design of railway bridge transition zones, although the plastic deformation is the governing factor of frequent track deterioration. Actual stress behavior of fine grained subgrade/embankment layers under train traffic is, however, difficult to replicate using the conventional laboratory test apparatus and techniques. A new type of torsional simple shear apparatus, known as multi-ring shear apparatus, was therefore developed to evaluate the actual stress state and the corresponding cyclic plastic deformation characteristics of subgrade materials under moving wheel load conditions. Multi-ring shear test results has been validated using a theoretical model test results; the capability of the multi-ring shear apparatus for replicating the cyclic plastic deformation characteristics of subgrade under moving train wheel load conditions is thus established. This paper describes the effects of principal stress rotation (PSR) of the subgrade materials to the cyclic plastic deformation in a railroad and impacts of testing methods in evaluating the influence of principal stress rotation to the track deterioration of rail track.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food-borne pathogens are present in normal healthy pigs and thus are also present in pig wastes and by-products. The presence of these pathogens can be viewed negatively (i.e. 'a spoke in the wheel') or as simply another issue that requires the adoption of appropriate guidelines and management procedures. A key component in the development of appropriate, effective guidelines and management practices is a solid basis of knowledge on which pathogens are present as well as the levels of these pathogens. This paper reviews Australian Pork Limited (APL) funded projects carried out in our laboratories that have provided a solid base of Australian data for the pig industry. These data will ensure that pathogens are not 'a spoke in the wheel' but rather an issue - like many others that confront the industry - that can be managed to ensure that there is no unacceptable risk to either public health or the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway wheel vibrations are caused by a number of mechanisms. Two of these are considered: (a) gravitational load reaction acting on different points of the wheel rim, as the wheel rolls on, and (b) random fluctuating forces generated at the contact patch by roughness on the mating surfaces of the wheel and rail. The wheel is idealized as a thin ring, and the analysis is limited to a single wheel rolling on a rail. It is shown that the first mechanism results in a stationary pattern of vibration, which would not radiate any sound. The acceleration caused by roughness-excited forces is much higher at higher frequencies, but is of the same order as that caused by load reaction at lower frequencies. The computed acceleration level (and hence the radiated SPL) caused by roughness is comparable with the observed values, and is seen to increase by about 10 dB for a doubling of the wagon speed. The driving point impedance of the periodic rail-sleeper system at the contact patch, which is used in the analysis, is derived in a companion paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An engineering analysis of the design of two-wheel bullock carts has been carried out with the aid of a mathematical model. Non-dimensional expressions for the pull and the neck load have been developed. In the first instance, the cart is assumed to be cruising at constant velocity on a terrain with the effective coefficient of rolling friction varying over a wide range (0.001 to 0.5) and the gradient varying between +0.2 to −0.2. Subsequently, the effect of inertia force due to an acceleration parallel to the ground is studied. In the light of this analysis, two modifications to the design of the cart have been proposed and the relative merits of the current designs and the proposed designs are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(I) complexes with {Cu(μ2-S)N}4 and {Cu(μ3-S)N}12 core portions of butterfly-shaped or double wheel architectures have been isolated in the reaction of Cu(I) with the Schiff base ligand C6H4(CHNC6H4S)2, aiso-abtâ, under different conditions. View the MathML source containing the tetranuclear electroneutral complex View the MathML source is formed by the reaction of CuI in acetonitrilic solution and recrystallization from DMF, whereas View the MathML source containing dodecanuclear View the MathML source wheels is accessible starting from CuBF4. Complexes 2 and 4 represent the first examples of cyclic complexes with the same overall stoichiometry but different ring sizes. The ligand induces two different coordination environments around copper(I) by switching between μ2- and μ3-sulfur bridging modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheel bearings play a crucial role in the mobility of a vehicle by minimizing motive power loss and providing stability in cornering maneuvers. Detailed engineering analysis of a wheel bearing subsystem under dynamic conditions poses enormous challenges due to the nonlinearity of the problem caused by multiple factional contacts between rotating and stationary parts and difficulties in prediction of dynamic loads that wheels are subject to. Commonly used design methodologies are based on equivalent static analysis of ball or roller bearings in which the latter elements may even be represented with springs. In the present study, an advanced hybrid approach is suggested for realistic dynamic analysis of wheel bearings by combining lumped parameter and finite element modeling techniques. A validated lumped parameter representation serves as an efficient tool for the prediction of radial wheel load due to ground reaction which is then used in detailed finite element analysis that automatically accounts for contact forces in an explicit formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a framework for optimum steering input determination of all-wheel steer vehicles (AWSV) on rough terrains. The framework computes the steering input which minimizes the tracking error for a given trajectory. Unlike previous methodologies of computing steering inputs of car-like vehicles, the proposed methodology depends explicitly on the vehicle dynamics and can be extended to vehicle having arbitrary number of steering inputs. A fully generic framework has been used to derive the vehicle dynamics and a non-linear programming based constrained optimization approach has been used to compute the steering input considering the instantaneous vehicle dynamics, no-slip and contact constraints of the vehicle. All Wheel steer Vehicles have a special parallel steering ability where the instantaneous centre of rotation (ICR) is at infinity. The proposed framework automatically enables the vehicle to choose between parallel steer and normal operation depending on the error with respect to the desired trajectory. The efficacy of the proposed framework is proved by extensive uneven terrain simulations, for trajectories with continuous or discontinuous velocity profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work shows the method developed to solve the wheel-rail contact problem via a look-up table with a three-dimensional elastic model. This method enables introduction of the two contact point effect on vehicle movement using three-dimensional analysis of surfaces including the influence of the angle of attack. This work presents several dynamic simulations and studies the impact that the introduction of the two contact points on three dimensions has on wear indexes and derailment risk against traditional bidimensional analysis. Furthermore, it studies advantages and disadvantages of using a look-up table against an on-line resolution of the problem.