830 resultados para wear strengthening and toughening


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stirred Mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. In the first part of this paper, media flow patterns and energy absorption rates and distributions were analysed to provide a good understanding of the media flow and the collisional environment in these mills. In this second part we analyse steady state coherent flow structures, liner stress and wear by impact and abrasion. We also examine mixing and transport efficiency. Together these provide a comprehensive understanding of all the key processes operating in these mills and a clear understanding of the relative performance issues. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene–polymer nanocomposites have promising properties as new structural and functional materials. The remarkable mechanical property enhancement in these nanocomposites is generally attributed to exceptional mechanical property of graphene and possible load transfer between graphene and polymer matrix. However, the underlying strengthening and toughening mechanisms have not been well understood. In this work, the interfacial behavior of graphene-polyethylene (PE) was investigated using molecular dynamics (MD) method. The interfacial shear force (ISF) and interfacial shear stress (ISS) between graphene and PE matrix were evaluated, taking into account graphene size, the number of graphene layers and the structural defects in graphene. MD results show that the ISS at graphene-PE interface mainly distributes at each end of the graphene nanofiller within the range of 1 nm, and much larger than that at carbon nanotube (CNT)-PE interface. Moreover, it was found that the ISS at graphene-PE interface is sensitive to the layer number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ∼27% and ∼24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was designed to derive central and peripheral oxygen transmissibility (Dk/t) thresholds for soft contact lenses to avoid hypoxia-induced corneal swelling (increased corneal thickness) during open eye wear. Central and peripheral corneal thicknesses were measured in a masked and randomized fashion for the left eye of each of seven subjects before and after 3 h of afternoon wear of five conventional hydrogel and silicone hydrogel contact lens types offering a range of Dk/t from 2.4 units to 115.3 units. Curve fitting for plots of change in corneal thickness versus central and peripheral Dk/t found threshold values of 19.8 and 32.6 units to avoid corneal swelling during open eye contact lens wear for a typical wearer. Although some conventional hydrogel soft lenses are able to achieve this criterion for either central or peripheral lens areas (depending on lens power), in general, no conventional hydrogel soft lenses meet both the central and peripheral thresholds. Silicone hydrogel contact lenses typically meet both the central and peripheral thresholds and use of these lenses therefore avoids swelling in all regions of the cornea. ' 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 92B: 361–365, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background A population-based, cross-sectional telephone survey was conducted to estimate the penetrance and characteristics of contact lens wear in Australia. Methods Based on postcode distribution, 42,749 households around Australia were randomly selected from the national electronic telephone directory. During calls, the number of individuals and contact lens wearers in each household aged between 15 and 64 years was ascertained. Contact lens wearers were interviewed using a structured questionnaire, to determine details of demographics, lens type, mode of lens wear and hygienic habits. Contact lens wear characteristics and habits were compared by lens type and mode of use. Results Of the 32,405 households contacted, 19,171 (59.2 per cent) agreed to participate. The penetrance of contact lens wear during the study period was 5.01 per cent (95% CI: 4.78-5.24). The mean age of lens wearers was 36.5 ± 18.3 years and 63.4 per cent were female. There were significant differences in the habits and characteristics of lens wearers depending on their lens type and mode of use. Conclusions The penetrance of contact lens wear concurs with market estimates and equates to approximately 680,000 contact lens wearers aged between 15 and 64 years in Australia. This is the most detailed and extensive population-based survey of contact lens wearers ever conducted. The discrepancies found between the characteristics of lens wearers surveyed in this study compared to those in previous studies of contact lens practitioners highlights the importance of study design. These results may be applied to other regions with similar health-care and regulatory systems.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We thank Dr Shedden and Dr Pall for their insightful comments and the opportunity to clarify a number of points from our work.1 The “protection factor” (PF) expressed as the inverse of the transmittance of contact lens (CL) material (1/Tλ), where T is the percentage transmittance of ultraviolet radiation (UVR) in a given waveband (UVC, UVB or UVA) of the UV spectrum for contact lenses is the standard method for reporting PF values and as such there should not be any controversy. We have calculated the PF for each wavelength across the entire UV spectrum (UVC, UVB, UVA) as presented in figure 3 of our previous publication.1 In that article, we were simply stating the observation when transmission in the UVC spectra band is considered especially because appreciable amounts of potentially carcinogenic short UV wavelengths was shown to be present in sunlight in our region three decades ago2 and these short wavelength photons are reported to be more biologically damaging to ocular tissues.3 In addition, the depletion of the Ozone layer is still continuing. Nevertheless, we understand the concern of the authors that the results of the PF might be confusing to those who are not familiar with the science of UVR and as such we have made some revisions to the findings of the calculated PF...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined. The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wear tests were done in a pin-on-disc machine by sliding MoSi2 pins against hard-steel discs in a normal load range of 5-140 N and a speed of 0.5 m/s under nominally dry conditions in the ambient. The specific wear rate of the pin undergoes two transitions: severe to mild at low load and mild to severe at high load. The mild-wear domain is distinguished by the formation of a protective mechanically mixed layer of steel and its oxides, transferred from the counterface in particulate form. Increasing the hardness by densification and TiB2 reinforcement lowers the specific wear rate and expands the mild-wear load domain. However, even when the volume wear rate is normalised with respect to the real contact area (load/hardness) the non-dimensional wear factor is still seen to decrease with densification and reinforcement. This indicates that fracture toughness may also play an important role in determining the wear-resistance of these materials. The surface coverage on the pin by the mechanically mixed layer increases with densification and reinforcement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type of abrasion that the grinding medium experiences inside a ball mill is classified as high stress or grinding abrasion, because the stress levels at the surface of the medium exceed the yield stress of the metal when hard abrasives are crushed. During dry grinding of ores the medium undergoes not only abrasion but also erosion and impact. As all three mechanisms of wear occur simultaneously, it is difficult to follow the individual components of wear. However, it is possible to show that the overall kinetics of wear follows a simple power law of the type w = at(b), where w is the weight loss of the grinding medium for a specified grinding time t and a and b are constants. Experimental data, obtained from dry grinding of quartz for a wide range of times using AISI 52100 steel balls having various microstructures in a laboratory scale batch mill, are fitted to the proposed equation and the wear rate w is calculated from the first derivative of the equation. The mean particle sizes of the quartz charge DBAR corresponding to 50 and 80% retained size are determined by mechanical sieving of the ground product after a grinding time t and thus the relationship between wear rate and particle size of the abrasive is established. It is found that w increases rapidly with DBAR up to some critical size and then increases at a much lower rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper deals with the study of microstructure and wear characteristics of TiB2 reinforced aluminium metal matrix composites (MMCs). Matrix alloys with 5, 10 and 15% of TiB2 were made using stir casting technique. Effect of sliding velocity on the wear behaviour and tribo-chemistry of the worn surfaces of both matrix and composites sliding against a EN24 steel disc has been investigated under dry conditions. A pin-on-disc wear testing machine was used to find the wear rate, in which EN24 steel disc was used as the counter face, loads of 10-60N in steps of 10N and speeds of 100, 200, 300, 400 and 500 rpm were employed. The results showed that the wear rate was increased with an increase in load and sliding speed for both the materials. However, a lower wear rate was obtained for MMCs when compared to the matrix alloys. The wear transition from slight to severe was presented at the critical applied loads. The transition loads for the MMCs were much higher than that of the matrix alloy. The transition loads were increased with increase in TiB2 and the same was decreased with the increase of sliding speeds. The SEM and EDS analyses were undertaken to demonstrate the effect of TiB2 particles on the wear mechanism for each conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sliding tests were conducted, in air, of YTZP ceramic pins against steel discs at an applied pressure of 15.5 MPa over a speed range of 0.3 to 4.0 ms(-1). Pin wear was not detectable until 2.0 m s(-1), after which a finite but small wear rate was observed at 3.0 m s(-1), accompanied by a red glow at the contacting surface. A transition in wear behaviour and friction (mu) occurred at 4.0 ms(-1), increasing the former by over two orders of magnitude. Both mu and wear behaviour changed with time at 4.0 m s(-1). During initial periods mu was high and wear rate increased steadily with time accompanied by ceramic transfer onto the disc, which increased with time. When disc coverage exceeds a certain threshold value, mu decreased rapidly and the wear rate stabilized at a very high value. Metal transfer was not observed at any speed. High surface temperatures brought about significant adhesion between TZP and steel and this together with enhanced plastic deformation brought about a transition in wear behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In lubricated sliding contacts, components wear out and the lubricating oil ages with time. The present work explores the interactive influence between lubricant aging and component wear. The flat face of a steel pin is slid against a rotating steel disk under near isothermal conditions while the contact is immersed in a reservoir of lubricant (hexadecane). The chemical changes in the oil with time are measured by vibrational spectroscopy and gas chromatography. The corresponding chemistry of the pin surface is recorded using X-ray photoelectron spectroscopy while the morphology of the worn pins; surface and subsurface, are observed using a combination of focused ion beam milling and scanning electron 5 microscopy. When compared to thermal auto-oxidation of the lubricant alone, steel on steel friction and wear are found to accentuate the decomposition of oil and to reduce the beneficial impact of antioxidants. The catalytic action of nascent iron, an outcome of pin wear and disk wear, is shown to contribute to this detrimental effect. Over long periods of sliding, the decomposition products of lubricant aging on their own, as well as in conjunction with their products of reaction with iron, generate a thick tribofilm that is highly protective in terms of friction and wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stainless steel of type AISI 316LN - one of the structural materials of fast neutron reactors - must have a long service life under conditions that subject it to different types of wear (galling, adhesion, fretting, and abrasion). Cobalt-based hard facings are generally avoided due to induced radioactivity. Nickel-based hard facings are strongly preferred instead. One alternative to both types of coatings is a hard-alloy coating of CrN. This article examines wear and friction characteristics during the sliding of uncoated steel SS316LN and the same steel with a CrN coating. In addition, a specially designed pin-on-disk tribometer is used to perform tests in a vacuum at temperatures of up to 1000 degrees C in order to study the effect of oxygen on the wear of these materials. The morphology of the wear surface and the structure of the subsurface were studied by scanning electron microscopy. The formation of an adhesion layer and the self-welding of mating parts are seen to take place in the microstructure at temperatures above 500 degrees C. It is also found that steel SS316LN undergoes shear strain during sliding wear. The friction coefficient depends on the oxygen content, load, and temperature, while the wear rate depends on the strain-hardening of the surface of the material being tested.